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ABSTRACT
This report describes the mathematical modeling of waves as sug-
gested in research literature, as well as a possible way to model
ship motion suggested by the authors. Important concepts such as
sea state, wave spectrum and lifting force are introduced. The end
results of the work are two MATLAB-files; the first file simulates
waves given desired wave properties, while the second file places
the ship on pre-simulated waves and calculates the motion of the
ship on these waves. Videos explaining the demonstration files
were also recorded and are published in the YouTube channel of
one of the authors.
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1 INTRODUCTION
This report describes the knowledge acquired during the six-week
summer job donewithin the LINK-SIC cooperation between Linköping
University and UMS Skeldar. In short, the goals of the project were:

• to research the motions of waves and the concept sea state;
• to simulate wave heights through time;
• to simulate ship motion generated by wave motion.

The end goal with this research is to study the motion of ships on
water in order to facilitate the landing of multi-rotor aerial vehicles
on a ship.

2 SEAWAVES
In this section, important concepts about waves and associated
equations are described.

Waves are formed due to the influence of winds, astronomical
gravitational forces, and floating structures such as ships. They are
usually described by their height, length and period [7]. The wave
height is defined as the vertical difference between the elevations
of a crest and a neighbouring trough. The focus of this report is to
describe waves formed by the presence of wind, which is called a
fully developed sea.

Sea waves can be interpreted as superpositions of many different
harmonic waves, each with its own amplitude, frequency and phase,
as can be seen from Figure 1 [2].

2.1 Wave models: short vs long-crested sea
There are two main models to describe the type of sea waves: short-
crested and long-crested. In a long-crested sea (aka unidirectional),
all of the waves are parallel. In a short-crested sea, the waves are
multi-directional. Modeling of a short-crested sea is done with a
spreading function, see page 209 in [3]. The concept of a spreading
function is further explained in Section 3. An example of a long
and short-crested sea can be seen in Figure 2.

Figure 1: Superposition of waves and spectrum.

Figure 2: Simulated short-crested and long-crested sea.

2.2 Wave direction
In this report and in the resulting MATLAB-files, the main wave
direction is denoted as 𝛽 . See Figure 3 for details on how the angles
are defined relative to the ship.



Figure 3: Wave directions in relation to the ship heading.
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Figure 4: Rayleigh distribution. Shaded area equals 1/3 of the
area under the function. The point 𝐻𝑠 is the centroid of the
shaded area.

2.3 Sea state
In oceanography, sea state is a metric describing the general condi-
tion of a body of water on a scale from 0 to 9 where 0 corresponds
to a calm, glassy sea and 9 corresponds to a phenomenally agitated
sea. The parameters that define a sea state level are the significant
wave height 𝐻𝑠 and the mean or peak period time of the waves 𝑇𝑠 .
The significant wave height 𝐻𝑠 is defined as the average height of
the largest one third of the waves (see page 200 in [3]) and can be
derived from the Rayleigh probability density function as shown in
Figure 4.

The relation between sea states and different 𝐻𝑠 is explained in
Figure 5. See page 204 in [3].

2.4 Wave spectrum
The spectrum of a signal is a description of the distribution of the
energy in the frequency components that compose the signal. In
the case of sea waves, there are predefined spectra, where different
spectra are derived based on different assumptions on how the

Figure 5: Significant wave heights and sea states.
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Figure 6: Bretschneider wave spectrum for sea state 3.

waves are formed and on the surrounding environment, see Section
8.2.2 in [3] and Section 5.4 in [7].

Throughout this report, the Bretschneider spectrum will be used,
which was developed for the North Atlantic sea, for seas of infinite
depth. See page 202 in [3] and page 5.13 in [7]. The spectrum is
modeled using

𝑆 (𝑤) = 0.78
𝑤−5 𝑒

−𝐵
𝑤4 , (1)

where 𝐵 = 3.11
𝐻 2

1/3
and𝐻1/3 is a statistical measure of the wave heights

depending on the sea state, see Table 5.4 and Equation (5.36) in [7].
An example of the spectrum is shown in Figure 6.

3 SPECTRUM TOWAVE ELEVATION
This section describes the process of achieving a wave elevation
given a sea state and a spectrum. In the sections below, the formulas
for getting the wave elevation in a single point and in a 2D plane
are described.
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3.1 Wave heights in a point through time
Given a wave spectrum and the parameters required to describe
the spectrum, the wave elevation 𝜉 (𝑡) for a short-crested sea is
calculated according to (see page 210 in [3])

𝜉 (𝑡) =
𝑁∑
𝑘=1

𝑀∑
𝑖=1

𝐴𝑘 cos(𝑤𝑘𝑡 + 𝜖𝑖,𝑘 ). (2)

The amplitude 𝐴𝑘 is

𝐴𝑘 =
√

2𝑆𝑚 (𝑤𝑘 , 𝜇𝑖 − 𝛽)Δ𝑤Δ𝜇, (3)
and

𝑆𝑚 (𝑤, 𝜇) = 𝑆 (𝑤)𝑀 (𝜇). (4)
The variables in (2), (3) and (4) are:
• 𝑆 (𝑤) - wave spectrum;
• 𝑀 (𝜇) - spreading function;
• 𝑤𝑘 - 𝑘𝑡ℎ frequency in the discretized wave spectrum;
• 𝛽 - direction of the main wave;
• 𝜇𝑖 - direction of the 𝑖𝑡ℎ wave relative to the main wave;
• Δ𝑤 - interval between each discretized frequency in the
spectrum;

• 𝛿𝜇 - interval between each wave direction;
• 𝜖𝑖,𝑘 - random phase in interval [0, 2𝜋] for the 𝑖𝑡ℎ direction
of a wave with 𝑘𝑡ℎ frequency.

The spreading function𝑀 (𝜇) is defined as:

𝑀 (𝜇) =
{

2
𝜋 cos2 (𝜇), −𝜋

2 ≤ 𝜇 ≤ 𝜋
2

0, elsewhere.
(5)

As can be seen in Figure 7, this is a bell function which decays
for values far from the mean, where the mean in this case is the
main wave direction 𝛽 . The function has this specific shape due to
the assumption that, if the main wave is traveling with direction
𝛽 , than all other waves are in the interval [𝛽 − 𝜋

2 , 𝛽 + 𝜋
2 ], which is

a sensible assumption made in [3]. The constant term 2
𝜋 ensures

that
´ 𝜋

2
− 𝜋

2
𝑀 (𝜇)𝑑𝜇 = 1, this way the energy is fully described by

the spectrum 𝑆 (𝑤). The spreading function spreads the energy, it
neither adds or removes it, see page 209 in [3]. A narrower spreading
function would simply disperse more of the energy in the near
proximity of the main wave direction and make the sea model more
long-crested.

3.2 Wave heights in a 2D plane through time
In a similar way as in (2), one can extend the equation to find the
wave height through time for all points (𝑥,𝑦). To start off with
a simple example, we will look at how to extend the sinusoidal
timedependent function cos(𝜔𝑡) to also cover one dimension in
space, the x-axis for instance. This can be done by extending the
equation from cos(𝜔𝑡) to cos(𝑘𝑥 − 𝜔𝑡) [6], where 𝑘 is the wave
number described by

𝑘 =
𝜔

𝑣
=

2𝜋
𝜆
, (6)

where 𝜆 is the wave length and 𝑣 is the wave speed.
The extended Equation (2) for wave height in a 2D plane can be

expressed as
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Figure 7: Spreading function M(𝜇).

𝜉 (𝑥,𝑦, 𝑡) =
𝑁∑
𝑘=1

𝑀∑
𝑖=1

𝐴𝑘 cos(𝑘 (𝑥 cos(𝜇𝑖−𝛽)+𝑦 sin(𝜇𝑖−𝛽))−𝑤𝑘𝑡+𝜖𝑖,𝑘 ),

(7)
where the amplitude 𝐴𝑘 is

𝐴𝑘 =
√

2𝑆𝑚 (𝑤𝑘 , 𝜇𝑖 − 𝛽)Δ𝑤Δ𝜇. (8)
If the wave speed and wave length are unknown,𝑘 can be approx-

imated to 𝑘 = 𝜔2

𝑔 for a deep sea, 𝜔2 = 𝑔𝑘 tanh(𝑘ℎ) for intermediate
depth, and 𝑘 = 𝜔√

𝑔ℎ
for a shallow sea [6]. The sea is assumed to be

deep in all of the simulations provided. The variable ℎ above stands
for the depth of the sea.

3.3 Result: simulated waves
Figure 8 shows the waves achieved by getting the wave heights
for all (𝑥,𝑦) coordinates in a 2D grid, for different sea states. This
is the end result achieved by the research of how to simulate sea
waves in Sections 2 and 3.

4 SHIP MOTION IN 6 DEGREES OF FREEDOM
In this section, it is described how the mathematical modeling of
the ship motions was done with six degrees of freedom. A general
presentation is given first, and further down, more details are given
on how the forces and torques on the ship hull are computed.

4.1 State setup
To analyse the motion of a ship on water, the ship is described
in six degrees of freedom. There are three degrees of freedom for
translation, and three for rotation, see Figure 9. Two different right-
hand coordinate systems are used: an earth-fixed and a body-fixed
coordinate system. The origin of the body-fixed coordinate system
is located at the ship’s center of gravity.

A state space model with twelve variables was created to study
the motion of the ship through time. The states are:

[𝑥,𝑦, 𝑧, 𝑣𝑢 , 𝑣𝑣, 𝑣𝑤 , 𝜙, 𝜃,𝜓, 𝜔𝜙 , 𝜔𝜃 , 𝜔𝜓 ]𝑇 ,
where the meaning of the state variables is the following:

• [𝑥,𝑦, 𝑧] - position of the ship’s center of gravity described
in the earth-fixed coordinate system;

3



Figure 8: End result: waves of sea states 2, 3 and 5.

Figure 9: Ship and its six degrees of freedom. The earth-fixed
axes are (𝑥,𝑦, 𝑧) and the body-fixed axes are (𝑢, 𝑣,𝑤).

• [𝑣𝑢 , 𝑣𝑣, 𝑣𝑤] - velocity of the ship’s center of gravity described
in the body-fixed coordinate system;

• [𝜙, 𝜃,𝜓 ] - Euler angles describing rotation of the body-fixed
axes in relation to the earth-fixed axes;

• [𝜔𝜙 , 𝜔𝜃 , 𝜔𝜓 ] - rotational velocity in the body-fixed coordi-
nate system.

4.2 Motion model
In this section, we introduce how the motion model suggested by
the authors is related to the motion model suggested by the author
of [3].

4.2.1 States [𝑥,𝑦, 𝑧].
For states [𝑥,𝑦, 𝑧], the equations of motion are:

©­«
¤𝑥
¤𝑦
¤𝑧

ª®¬ = R𝑇 ©­«
𝑣𝑢
𝑣𝑣
𝑣𝑤

ª®¬. (9)

Here, a transformation from the body-fixed velocities [𝑣𝑢 , 𝑣𝑣, 𝑣𝑤] to
earth-fixed velocities [ ¤𝑥, ¤𝑦, ¤𝑧] is made using the rotation matrix 𝑅𝑇
(see Equation (13.7) in [4]), where s represents sinus and c represents
cosinus:

R =
©­«

𝑐 (𝜃 )𝑐 (𝜓 ) 𝑐 (𝜃 )𝑠 (𝜓 ) −𝑠 (𝜃 )
𝑠 (𝜙)𝑠 (𝜃 )𝑐 (𝜓 ) − 𝑐 (𝜙)𝑠 (𝜓 ) 𝑠 (𝜙)𝑠 (𝜃 )𝑠 (𝜓 ) + 𝑐 (𝜙)𝑐 (𝜓 ) 𝑠 (𝜙)𝑐 (𝜃 )
𝑐 (𝜙)𝑠 (𝜃 )𝑐 (𝜓 ) + 𝑠 (𝜙)𝑠 (𝜓 ) 𝑐 (𝜙)𝑠 (𝜃 )𝑠 (𝜓 ) − 𝑠 (𝜙)𝑐 (𝜓 ) 𝑐 (𝜙)𝑐 (𝜃 )

ª®¬ .
(10)

The rotation matrix 𝑅 transforms a vector from earth-fixed coor-
dinates to the ship’s body-fixed coordinates by rotating the vector
with the given angles [𝜙, 𝜃,𝜓 ].

4.2.2 States [𝑣𝑢 , 𝑣𝑣, 𝑣𝑤].
For states [𝑣𝑢 , 𝑣𝑣, 𝑣𝑤], the equations of motion are:

©­«
¤𝑣𝑢
¤𝑣𝑣
¤𝑣𝑤

ª®¬ =
©­­«
−𝐶𝑑,𝑢𝐴𝑢𝜌

𝑚 𝑣𝑢 + 1
𝑚 𝐹𝑢

−𝐶𝑑,𝑣𝐴𝑣𝜌

𝑚 𝑣𝑣 + 1
𝑚 𝐹𝑣

−𝐶𝑑,𝑤𝐴𝑤𝜌

𝑚 𝑣𝑤 + 1
𝑚 𝐹𝑤

ª®®¬ −
©­«
𝜔𝜙

𝜔𝜃

𝜔𝜓

ª®¬ × ©­«
𝑣𝑢
𝑣𝑣
𝑣𝑤

ª®¬ . (11)

The constants in 11 are:
• 𝐶𝑑 - damping constants of velocity;
• [𝐴𝑢 , 𝐴𝑣, 𝐴𝑤] - cross-sectional areas along the ship’s 𝑢, 𝑣 and
𝑤 axes [𝑚2];

• 𝜌 - water density equal to 998[ 𝑘𝑔
𝑚3 ] [8];

• 𝑚 - mass of the ship, [𝑘𝑔].
See Section 4.2.6 for details on how the viscous damping force

𝐶𝑑𝐴𝑢𝜌
𝑚 𝑣 is "linearized", and read more about the Coriolis force in

Section 4.3.2 for details on the cross product term.
The 𝐹 {𝑢,𝑣,𝑤 } terms are the sum of all buoyant forces and weight

expressed in ship-fixed coordinates:

©­«
𝐹𝑢
𝐹𝑣
𝐹𝑤

ª®¬ = R ©­«
𝐹𝑥
𝐹𝑦
𝐹𝑧

ª®¬ . (12)

For more details on how 𝐹 {𝑥,𝑦,𝑧 } are computed, see 4.3.

4.2.3 States [𝜙, 𝜃,𝜓 ].
The time derivatives of these states are given by

©­«
¤𝜙
¤𝜃
¤𝜓

ª®¬ = T ©­«
𝜔𝜙

𝜔𝜃

𝜔𝜓

ª®¬, (13)
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where 𝑇 in (13) denotes the transformation matrix that gives the
angle derivatives [ ¤𝜙 , ¤𝜃 , ¤𝜓 ] given the rotational velocities [𝜔𝜙 , 𝜔𝜃 ,
𝜔𝜓 ] (see Equation (13.9) in [4]):

T =
©­«
1 sin𝜙 tan𝜃 cos𝜙 tan𝜃
0 cos𝜙 − sin𝜙
0 sin𝜙 sec𝜃 cos𝜙 sec𝜃

ª®¬ . (14)

4.2.4 States [𝜔𝜙 , 𝜔𝜃 , 𝜔𝜓 ].
Finally, the motion equations for the rotational velocities are

©­«
¤𝜔𝜙

¤𝜔𝜃

¤𝜔𝜓

ª®¬ =
©­­«
−𝐵𝑢

𝐼𝑢
𝜔𝜙 + 1

𝐼𝑢
𝜏𝑢

−𝐵𝑣

𝐼𝑣
𝜔𝜃 + 1

𝐼𝑣
𝜏𝑣

−𝐵𝑤

𝐼𝑤
𝜔𝜓 + 1

𝐼𝑤
𝜏𝑤

ª®®¬ . (15)

The term −𝐵𝑢
𝐼𝑢
𝜔𝜙 is the viscous damping along the 𝑢-axis, see

(22).
The variables 𝜏{𝑢,𝑣,𝑤 } denote the sum of all torques acting on the

ship hull, and are expressed in ship coordinates. For more details
on how these are computed, see Section 4.4.
The constants in (16) are:

• 𝐵 - torsional viscous damping coefficient [𝑁 · 𝑠/𝑚];
• [𝐼𝑢 , 𝐼𝑣, 𝐼𝑤] - moments of inertia of the ship along the body-
fixed axes 𝑢, 𝑣 and𝑤 [𝑘𝑔 ·𝑚2].

4.2.5 Summary.
In summary, the continuous version of the state update equations
suggested by the authors is:

©­­­­­­­­­­­­­­­­­­­«

¤𝑥
¤𝑦
¤𝑧
¤𝑣𝑢
¤𝑣𝑣
¤𝑣𝑤
¤𝜙
¤𝜃
¤𝜓
¤𝜔𝜙

¤𝜔𝜃

¤𝜔𝜓

ª®®®®®®®®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­­­­­­­­­­­«

R𝑇 ©­«
𝑣𝑢
𝑣𝑣
𝑣𝑤

ª®¬
−𝐶𝑑,𝑢𝐴𝑢𝜌

𝑚 𝑣𝑢 + 1
𝑚 𝐹𝑢

−𝐶𝑑,𝑣𝐴𝑣𝜌

𝑚 𝑣𝑣 + 1
𝑚 𝐹𝑣

−𝐶𝑑,𝑤𝐴𝑤𝜌

𝑚 𝑣𝑤 + 1
𝑚 𝐹𝑤

T ©­«
𝜔𝜙

𝜔𝜃

𝜔𝜓

ª®¬
−𝐵𝑢

𝐼𝑢
𝜔𝜙 + 1

𝐼𝑢
𝜏𝑢

−𝐵𝑣

𝐼𝑣
𝜔𝜃 + 1

𝐼𝑣
𝜏𝑣

−𝐵𝑤

𝐼𝑤
𝜔𝜓 + 1

𝐼𝑤
𝜏𝑤

ª®®®®®®®®®®®®®®®®®®®®®®¬

. (16)

4.2.6 Thor I. Fossen’s motion model.
The motion model proposed by Fossen in [3] is

(𝑀𝑅𝐵 +𝑀𝐴) ¤𝑣 + (𝐶𝑅𝐵 +𝐶𝐴)𝑣 + (𝐷𝑝 + 𝐷𝑣)𝑣 +𝐺𝜂 + 𝑔0 = 𝜏, (17)

where:
• 𝑣 is the body-fixed velocities and angular velocities;
• 𝑀𝑅𝐵 is the mass and inertia of the ship
• 𝑀𝐴 is the added mass from the movement in water;
• 𝐶𝑅𝐵 is the rigid-body Coriolis and centripetal matrix due to
the rotation;

• 𝐶𝐴 is the added mass Coriolis and centripetal matrix due to
the rotation;

• 𝐷𝑝 is the linear potential damping;
• 𝐷𝑣 is the linear viscous damping;
• 𝐺 is the restoring forces from the sea;

• 𝜂 is the earth-fixed coordinates and Euler angles;
• 𝑔0 is a term regarding trimming of the hull;
• 𝜏 is the forces and torque from the propulsion of the ship
and waves.

The added mass terms𝑀𝐴 and 𝐶𝐴 , linear potential damping 𝐷𝑝 ,
and trimming constant 𝑔0 will not be considered in the simulations.
The restoring forces 𝐺 are moved into 𝜏 , resulting in the model

𝑀𝑅𝐵 ¤𝑣 + (𝐶𝑅𝐵 + 𝐷𝑣)𝑣 = 𝜏 . (18)

The approximated motion model of the ship, described in (18) is
a spring-damper mass system, with the exception of the Coriolis
term and the linear spring force being replaced with a non-linear
spring force generated between the hydro-static pressure of the sea
and the hull of the ship. Equation (19) shows a 1D example of the
motion model in body-fixed z-coordinates

𝑚 ¥𝑧 + 𝑐 ¤𝑧 = −𝐹𝑛𝑙 + 𝑔. (19)

In reality the damping of the ship is realised by the radiated
waves, more about radiated waves in [5], and viscous damping
given by

𝐹𝑑 =
1
2
𝐶𝑑𝜌𝐴𝑠𝑣

2, (20)

where𝐶𝑑 is the drag coefficient dependent on the geometry, and𝐴𝑠

is the cross-sectional area. To keep the model as linear as possible
this drag force will be approximated to

𝐹𝑑 = 𝑐𝑣, 𝑐 = 𝐶𝑑𝜌𝐴𝑠 . (21)

Note that "linearizing" this way makes the coefficients of the
expression obsolete and they can no longer be related to the physical
properties of the ship. Hence, the coefficients can be replaced by
a single coefficient 𝑐 that is chosen freely to achieve the desired
dynamics of the ship (see Equation (3.30) in [11]).

Similarly to (19), rotation in 1D can be modeled in the same way

𝐼 ¥𝜃 + 𝐵 ¤𝜃 = 𝜏 . (22)

4.3 Forces
In this section, the forces taken into consideration are first intro-
duced, and then an explanation of how they are calculated in the
given context is given.

4.3.1 Hydrostatic lifting force.
The hydrostatic lifting force (also called buoyant force) is generated
by the hydrostatic pressure acting on the wet part of a submersed
object. It is defined as (Equation (4) in [7])

𝐹𝑏 =

"
𝑆

𝜌𝑔ℎ𝑛𝑑𝑆, (23)

where 𝜌 is the water density, 𝑔 is the gravitational acceleration
(𝑔 = 9.81 𝑚

𝑠2 ), ℎ is the distance between the submersed point and
the water surface, and 𝑛 is the normal vector to the surface 𝑑𝑆 , see
Section 2.2 in [7].

4.3.2 Coriolis force.
The Coriolis force is an inertial force that acts on objects that
are in a motion in a rotating reference frame. In this case, the
rotating reference frame is the ship, and the objects are the points
in the ship hull for which the forces are calculated [1] [9]. The
Coriolis force in a point with velocity 𝑣 in the reference frame,
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where the reference frame itself rotates with rotational velocity 𝜔
is: 𝐹𝑐𝑜𝑟𝑖𝑜𝑙𝑖𝑠 = −𝑚 · 𝜔 × 𝑣 .

4.3.3 Calculations.
The forces taken into consideration are the forces from the hydro-
static pressure of the sea (described in Section 4.3.1), the weight
of the ship and the Coriolis force. Therefore, forces such as the
dynamic pressure from the sea, added mass, wind forces and lift
force from forward translation are ignored. See page 82 in [3] for
a list of the forces that are often taken into consideration when
modeling ship motion and see [5] for more information about how
to derive the hydrodynamic pressure and added mass.

The 3D model of the ship, in this case in the form of an stl file,
is made of several triangles (called faces in the code) whose normal
vectors and areas can be computed. To compute the sum of all
forces acting on the ship, the hydrostatic forces applied by the
water orthogonally to each one of the triangles are summed up

©­«
𝐹𝑢
𝐹𝑣
−𝐹𝑤

ª®¬ =
∑
𝑖

𝜌𝑔𝐴𝑖ℎ𝑖𝑛𝑖 +
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0
0

−𝑚𝑔

ª®¬ + ©­«
𝐹𝑐𝑜𝑛𝑡𝑟𝑜𝑙

0
0

ª®¬ (24)

where 𝐴𝑖 is the area, ℎ𝑖 is the relative height of the water located
above the triangle’s midpoint and 𝑛𝑖 is the normal direction of the
𝑖𝑡ℎ triangle. See Figure 10 for a sketch of how the triangles and
normal vectors are set up. 𝐹𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is an added force to control the
forward speed of the ship in the simulations.

Figure 10: Triangles that represent ship hull and its normal
vectors.

4.4 Torques
Here, it is described how the torques 𝜏{𝑢,𝑣,𝑤 } named in Section 4.1
are calculated.

Each of the forces acting on the ship hull generates torque rela-
tive to the center of gravity. So, given a force 𝐹 𝑖 and a lever 𝑑𝑖 , both
expressed in body-fixed coordinates, the three dimensional torque
vector is computed as

𝜏𝑖 = (R𝑑𝑖 ) × (R𝐹 𝑖 ). (25)

Therefore, the sum of all torques becomes

𝜏𝑛𝑒𝑡 =
©­«
𝜏𝑢
𝜏𝑣
𝜏𝑤

ª®¬ =
∑
𝑖

𝜏𝑖 +
©­«

0
0
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ª®¬ (26)

where 𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is a moment added to the simulation to control and
maintain the reference yaw angle of the ship.

4.5 NED coordinate system in MATLAB
The standard coordinate system for marine vessels engineering
is NED (north-east-down), while MATLAB defines its coordinate
system as NWU (north-west-up) with both NED and NWU being
right-hand coordinate systems. To go from NWU to NED, it is
enough to roll 180 degrees along the x-axis, which corresponds to
inverting the signs of the y-axis and the z-axis. Finally, to adapt
to MATLAB’s coordinate system, the sign of the values along the
z-axis are inverted, so the plot is in the coordinate system NEU
(north-east-up).

4.6 Result: Simulated ship
See Figures 11 and 12 for a snapshot of a ship when on sea state 3,
and the inherent plot of the 12 states through time.

Figure 11: Snapshot of ship on waves of sea state 3.
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Figure 12: Plot of the states through time.

As can be seen in Figure 12, the global 𝑥 and 𝑦 positions of
the center of gravity change minimally while the global 𝑧 position
oscillates with greater amplitude, which is expectedwhen the height
of the waves varies and the waves are meeting the ship from the
front. It is also clear that the roll and that the yaw angles should
remain around 0 and that the pitch angle should vary with greater
amplitude as the waves meet the ship from the front.

Figure 13 shows the states through time for the helipad instead
of the ship’s center of gravity. This is achieved by calculating the
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Figure 13: Plot of the helipad states through time.

vector from the helipad to the center of gravity (𝑃𝑄) and rotating
it with the rotation matrix R𝑇 to get the new position, and the
helipad velocity is calculated by 𝑣𝑄 = 𝑣𝑃 + 𝜔 × 𝑃𝑄 .

5 DISCUSSION
The motion model developed by the authors has been shown to
be a simpler version of the model presented by Fossen in [3], as
some forces and resulting torques are neglected. Judging by the
visual results of the motion of the ship on the simulated waves, the
motion model seems to be realistic in the authors’ opinion. See the
appendix for more details and links to simulation videos.

Some possible improvements of the current model are for in-
stance to:

• implement the effect of added mass (see page 3.9 in [7] and
[10]);

• research the effects of the change of the center of buoyancy
when the ship pitches or rolls (see Chapter 2 in [7] and
Equation (1.28) in [5]) and coupling of states (see Section 1.1
in [5]);

• specify that the force that pushes the ship forward comes
from the propellers, which will generate a torque, and limit
the force generated by the propellers to a realistic limit;

• implement dynamic pressure from water (see [5]).
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APPENDIX - CODE TUTORIAL
In this appendix, a tutorial of the code produced to materialize the research is given. In short, the code has two components: wave simulation
and ship simulation.

Quick overview of results
For a quick overview of the resulting simulations, see the YouTube videos at the following links: roll test, pitch test and corridor test.

Get started
Start by cloning the repository from GitHub into your computer. The demo-files depend only on MATLAB’s official toolboxes and files
in the repository. When running the demo-files, remember to first run the section that adds paths to the folders /help-files, /boat-files and
/wave-files first as shown in Listing 1.

1 % Add paths to wave -files , help -files

2 wavesPath = [pwd , '\wave -files'];

3 helpFilesPath = [pwd , '\help -files'];

4 boatPath = [pwd , '\boat -files'];

5 addpath(wavesPath);

6 addpath(helpFilesPath);

7 addpath(boatPath);

Listing 1: Adding paths.

Wave simulation
The demo-file for wave simulation is demoCreateWaves.m. See in Listing 2 an example of how to simulate a wave of sea state 6 over a grid
with sides of 100 and 300 meters, over a time of 500 seconds. Properties of the wished waves are set through lines 9 to 14, then the waves are
simulated in line 16 in the file simulateWaves.m, and finally the simulated waves are saved in a mat file in line 31. This mat file will be used
to simulate the motion of a ship when traveling on these waves.

1 %% Wave #1: Sea state 6 wave coming from bow (front)

2 % ------- Use wave with properties below

3 % Sea state: 6

4 % Wave type (beta): long -crested (unidirectional)

5 % Wave angle: 180 degrees

6 % Grid: 200 x100

7 % Time: 0:0.2:500

8 % Relative speed 0 m/s

9

10 wavesStruct.seaState = 6;

11 wavesStruct.beta = pi;

12 wavesStruct.xVec = linspace(0, 299, 300);

13 wavesStruct.yVec = linspace(0, 99, 100);

14 wavesStruct.Ts = 0.2;

15 wavesStruct.tVec = 0: wavesStruct.Ts:500;

16 wavesStruct.U = 0;

17

18 wavesStruct.waves = simulateWaves(wavesStruct.seaState , ...

19 wavesStruct.xVec , wavesStruct.yVec , ...

20 wavesStruct.beta , wavesStruct.tVec ,wavesStruct.U);

21 wavesStruct.waveType = 'long';

22

23 wavesStruct.displayName = [

24 'Waves with properties: ', ...

25 '\n -Sea state: ', num2str(wavesStruct.seaState), ...

26 '\n -Significant wave height: ', num2str(getSignificantWaveHeight(wavesStruct.seaState)), ' m' ...

27 '\n -', wavesStruct.waveType , ' crested ' ...

28 '\n -Main wave direction (beta): ', num2str(wavesStruct.beta), ' rad', ...

29 '\n -xVec: ', num2str(wavesStruct.xVec (1)), ':', num2str (1), ':', num2str(wavesStruct.xVec(end)), ' m', ...

30 '\n -yVec: ', num2str(wavesStruct.yVec (1)), ':', num2str (1), ':', num2str(wavesStruct.yVec(end)), ' m', ...

31 '\n -tVec: ', num2str (1), ':', num2str(wavesStruct.Ts), ':', num2str(wavesStruct.tVec(end)), ' s', ...

32 '\n -U: ', num2str(wavesStruct.U), ' m/s', ...

33 '\n'];

34 saveWavesFile(wavesStruct);

Listing 2: Simulating wave of sea state 6. From demoSimulateWaves.m.
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A snapshot of the resulting simulation of this file is seen in Figure 14. For visualization of the waves through all the time, run the sections
below in Listing 3.

1 % To visualize waves , run:

2 waveFile = 'waves_seaState_6_long_beta_3 .14 _grid_300x100_time_0_0 .2 _500_U_0.mat';

3 w = load(waveFile).wavesStruct;

4 sea = surf(w.xVec , w.yVec , w.waves(:, :, 1));

5 axis([w.xVec (1) w.xVec(end) w.yVec (1) w.yVec(end) -5 5]);

6 pause (0.1);

7 for t=2: length(w.tVec)-1

8 sea.ZData = w.waves(:, :, t);

9 pause (0.02);

10 drawnow;

11 end

Listing 3: Code to visualize waves through time. From demoSimulateWaves.m.

Figure 14: Snapshot of waves of sea state 6.

The simulation of waves achieved with the theoretical results of sections 2 and 3 of the report is implemented in the file simulateWaves.m.
See the full file in Listing 5.

Ship simulation
Here, it is presented how to simulate the states of a ship through time given some predefined waves. The demo-file for ship simulation is
demoSimulateShip.m. See in Listing 4 an example of how to simulate a specific ship when on the waves of sea state 6 created previously.

1

2 %% ------- Create ship with properties below

3 % Ship: HMS Norfolk (hull only)

4 % Mass: 2.5e6

5 % Dimensions: 137 x15x16

6 % Vertices initial position: [30 35 5.55]

7 % Reference velocity along u: 0 [m/s] (should always be 0, the ship speed is set in the wave file)

8 % Reference yaw: 0 degrees

9 % CoG offset: [-4.77 0.022 -2]

10 % Position of heliPad [40 35 6]

11 shipStruct.file = 'filteredNorfolkNew.stl';

12 shipStruct.M = 2.5e6;

13 shipStruct.len = 137;

14 shipStruct.width = 15;

15 shipStruct.height = 16;

16 shipStruct.verticesPos = [30 35 5.55];

17 shipStruct.refSpeedU = 0;

18 shipStruct.refYaw = 0;

19 shipStruct.cogOffset = [-4.77 0.022 -2];

20 shipStruct.helipadPos = [40 35 6];

21 % [v_u v_v v_w phi th psi w_phi w_th w_psi]'
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22 shipStruct.x0 = [0 0 0 0 0 0 0 0 0]; % Initial state values

23

24 %% --------------- Demo #1: Sea state 6 pitch test (waves from the north)

25 % ------- Use wave with properties below

26 % Sea state: 6

27 % Wave type (beta): long -crested (unidirectional)

28 % Wave angle: 180 degrees (from the front)

29 % Grid: 300 x100

30 % Time: 0:0.2:500

31 % Ship speed 0

32 isPlot = true;

33 isVisual = true;

34 waveFile = 'waves_seaState_6_long_beta_3 .14 _grid_300x100_time_0_0 .2 _500_U_0.mat';

35 [states , face , vert , cogVec] = simulateShip(waveFile , shipStruct , isPlot , isVisual);

Listing 4: Simulating ship on waves of sea state 6. From demoSimulateShip.m.

A snapshot of the resulting simulation of waves and ship is seen in Figure 15. See also the resulting time plot of the 12 states of the ship in
16. To visualize the full simulation, just set the variable isVisual to true in line 33 of Listing 4.

Figure 15: Snapshot of ship on waves of sea state 3.
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Figure 16: Snapshot of ship on waves of sea state 3.

The simulation of the ship states through time achieved with the state space and motion model in Section 4 is implemented in the file
simulateShip.m. See the full file in Listing 6.
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Full simulation files
See first in Listing 5 the full simulation file simulateWaves.m that simulates waves.

1 function waves=simulateWaves(seaState , xVec , yVec , beta , tVec ,U , lambda , muVec , dmu)

2 % SIMULATEWAVES Takes in sea state and plots a wave height. Uses the

3 % Bretschneider spectrum.

4 %

5 % Inputs:

6 % - seaState: integer in interval [1, 9].

7 % - xVec: 1xN vector. E.g. xVec = linspace (-50, 50, 100).

8 % - yVec: 1xN vector. E.g. yVec = linspace (-50, 50, 100).

9 % - beta: direction of main wave in rad.

10 % - tVec: time vector. E.g.: tVec = 0:0.1:50.

11 % - U: speed of the ship [m/s]

12 % - muVec: angle directions vector. E.g.: -pi/2:dmu:pi/2. If muVec=[],

13 % then the waves generated will be unidirectional (long -

14 % crested).

15 % - dmu: direction interval taken in muVec. Used if muVec ~= [].

16 % - lambda: waveLength. If a sea with infinite depth is assumed , set

17 % lambda to [].

18 %

19 % Ouput:

20 % - waves: if ~is3d , then size(waves) = (1, length(tVec)), where waves

21 % is equal to the wave height in some point in the sea. If

22 % is3d , then size(waves) = (length(xVec), length(yVec),

23 % length(tVec)), where waves will then represent the wave

24 % height of all points (x, y) over a 2D grid defined by xVec

25 % and yVec over an interval of time tVec.

26 tic;

27 disp('Creating waves ...');

28 g = 9.81;

29

30 % Get significant wave height

31 Hs = getSignificantWaveHeight(seaState);

32

33 % Create Bretschneider spectrum given Hs and plot spectrum

34 dw = 0.1;

35 wVec = (dw/2:dw:3) ';

36

37 A = 8.1 * 1e-3 * g^2; % constant , eq 8.54

38 B = 3.11 / (Hs^2); % eq 8.55

39 specType = 1; % Bretschneider (@ Fossen pg 203), from kravspec

40 S = wavespec(specType , [A, B], wVec , 0);

41 S(1) = 0; % the first element is NaN for some reason

42

43 waves = zeros(length(yVec), length(xVec), length(tVec));

44

45 % Get the set of frequencies , directions and phases that will be used to

46 % generate waves for all points in the grid:

47 waveFrequencies = zeros(1, length(wVec));

48 for k=1: length(waveFrequencies)

49 waveFrequencies(k) = wVec(k) - dw/2 + dw * rand;

50 end

51

52 if nargin > 7 % Short -crested wave

53 waveDirections = zeros(1, length(muVec));

54 for i=1: length(waveDirections)

55 waveDirections(i) = muVec(i) - dmu/2 + dmu * rand;

56 end

57 sizeWaveDirections = length(waveDirections);

58 else

59 sizeWaveDirections = 1;

60 end

61

62 wavePhases = zeros(sizeWaveDirections , length(waveFrequencies));

63 for k=1: length(waveFrequencies)

64 for i=1: sizeWaveDirections

65 wavePhases(k, i) = 2 * pi * rand;

66 end

11



67 end

68

69 % Get the wave heights for all coordinates (x,y) for all times in tVec

70 for yIdx = 1: length(yVec)

71 y = yVec(yIdx);

72 for xIdx =1: length(xVec)

73 x = xVec(xIdx);

74

75 % For each coordinate (x,y), sum the contribution of all the waves

76 % to get the final wave amplitude at that point = sumOfWaves.

77 sumOfWaves = 0;

78

79 for k=1: length(waveFrequencies)

80 w_k = waveFrequencies(k);

81

82 % Long -crested

83 if nargin < 8

84 if nargin > 6

85 % Lambda is passed as an argument

86 coeff = 2 * pi / lambda;

87 else

88 % Infinite depth sea assumed

89 coeff = w_k ^ 2 / g;

90 end

91 e_k = wavePhases(k);

92 amp = sqrt(2 * S(k) * dw);

93 wave = amp * cos(coeff * ((x+U*tVec) * cos(-beta) ...

94 + y * sin(-beta)) ...

95 - w_k * tVec + e_k);

96 sumOfWaves = sumOfWaves + wave;

97

98 % Short -crested

99 else

100 for i=1: length(waveDirections)

101 e_ik = wavePhases (1, k);

102 mu_i = waveDirections(i);

103

104 amp = sqrt(2 * S(k) * spread(mu_i) * dw * dmu);

105 wave = amp * cos(w_k^2/g * ((x+U*tVec) * cos(mu_i - beta) ...

106 + y * sin(mu_i - beta)) ...

107 - w_k * tVec + e_ik);

108 sumOfWaves = sumOfWaves + wave;

109 end

110 end

111 end

112 waves(yIdx , xIdx , :) = sumOfWaves;

113 end

114 end

115 disp('Done creating waves!');

116 toc;

117

118

119 % ----------------------- Help functions ----------------------------------

120

121 function spreadFunction=spread(mu)

122 if (mu >= -pi/2 && mu <= pi/2)

123 spreadFunction = (2 / pi) * cos(mu)^2;

124 else

125 spreadFunction = 0;

126 end

127 end

128 end

Listing 5: Full file that simulates waves: simulateWaves.m.

And now, the full simulation file simulateShip.m. in Listing 6.
1 function [states , faces , vertices , cogVec] = simulateShip(wavesFile , shipStruct , isPlot , isVisual)

2 % SIMULATESHIP Ship on sea simulation. Given a waves file and a ship ,

3 % simulates 12 states of the ship through time. The states are:
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4 % - [x, y, z]: position of the ship[U+FFFD]s center of gravity (cog)

5 % described in the earth -fixed coordinate system;

6 % - [v_u , v_v , v_w]: velocity of the ship[U+FFFD]s cog described in the body

7 % -fixed coordinate system;

8 % - [phi , th, psi]: Euler angles describing rotation of the body -

9 % fixed coordinate system in relation to the earth

10 % -fixed coordinate system;

11 % - [w_phi , w_th , w_psi]: rotational velocity in the body -fixed

12 % coordinate system.

13 % The forces considered are only the hydrostatic (buoyancy) force by the

14 % water and the ship 's weight and the coriolis effect. Ignores: added mass ,

15 % propels force. To calculate the inertia , the ship was assumed to be a

16 % solid cuboid.

17 %

18 % Inputs:

19 % - wavesFile: file containing waves and its properties;

20 % - shipStruct: struct containing STL file and other ship properties;

21 % - isPlot: boolean , if true: plots states through time;

22 % - isVisual: boolean , if true: show visualization of simulation in 3D.

23 % Outputs:

24 % - states: all 12 states simulated through the time vector defined in

25 % the wave file;

26 % - faces: ship 's faces , only returned to be able to show

27 % visualization outside function;

28 % - vertices: ship 's vertices , only returned to be able to show

29 % visualization outside function;

30 % - cogVec: center of gravity vector , only returned to be able to show

31 % visualization outside function.

32 %

33 % Constants:

34 % - Ax: cross -sectional area of ship along ship 's x-axis [m^2];

35 % - Ay: cross -sectional area of ship along ship 's y-axis [m^2];

36 % - Az: cross -sectional area of ship along ship 's z-axis [m^2];

37 % - Ix: ship 's momentum of inertia along x axis;

38 % - Iy: ship 's momentum of inertia along y axis;

39 % - Iz: ship 's momentum of inertia along z axis;

40 % - Ki: integrational constant for the PI-regulator;

41 % - Kp: proportional constant for the PI-regulator;

42 % - B: damping constant for ship 's rotational velocity;

43 % - Cd: damping constant for ship 's velocity;

44 % - M: ship 's mass [kg];

45 % - ro: water density [kg/m^3];

46 % - g: gravitational acceleration [m/s^2];

47 % - l: length of ship (along x-axis) [m];

48 % - w: width of ship (along y-axis) [m];

49 % - h: height of ship (along z-axis) [m].

50

51 tic;

52

53 fprintf('\nStarted shipOnSea simulation !\n');

54

55 % ------------------------------- Define constants ------------------------

56 % ----- Non -tunable constants

57

58 % Ship dimensions inheritant to HMS Norfolk

59 len = shipStruct.len;

60 width = shipStruct.width;

61 height = shipStruct.height;

62 M = shipStruct.M;

63 %Cross sectional area of the submerged hull

64 Au = width *0.9 * height *0.33;

65 Av = height *0.33 * len;

66 Aw = len * width *0.9;

67

68 % Offset to ship 's center of gravity , set by trial and error

69 cogOffset = shipStruct.cogOffset;

70

71 % Ship 's moment of inertia

72 I = M/12 * diag([width^2 + height^2, len^2 + height^2, len^2 + width ^2]);
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73 Iu = I(1, 1);

74 Iv = I(2, 2);

75 Iw = I(3, 3);

76

77 % Physical constants

78 ro = 997;

79 g = 9.81;

80

81 % ----- Tunable constants

82 Kp_force = 9.5;

83 Ki_force = 0.82;

84 Kp_torque = 3.5;

85 Ki_torque = 0.5;

86 K_addedMass = 10;

87

88 %Cd = 5;

89 %B = 1e10;

90

91 C_du = 5;

92 C_dv = 5;

93 C_dw = 5;

94

95 B_phi = 1e10 /20;

96 B_th = 1e10;

97 B_psi = 1e10;

98

99

100 % ------------------------------- Load waves ------------------------------

101 disp('1) Loading waves ...');

102 waves = load(wavesFile).wavesStruct.waves;

103 beta = load(wavesFile).wavesStruct.beta;

104 xVec = load(wavesFile).wavesStruct.xVec;

105 yVec = load(wavesFile).wavesStruct.yVec;

106 tVec = load(wavesFile).wavesStruct.tVec;

107 Ts = load(wavesFile).wavesStruct.Ts;

108 displayName = load(wavesFile).wavesStruct.displayName;

109 fprintf (['Waves loaded: \n', displayName ]);

110

111 % ------------------------------- Load ship 's STL file --------------------

112 disp('2) Loading ship and computing normal vectors to triangles ...');

113 [faces , vertices , ~] = stlreadOwn(shipStruct.file);

114

115 vertices = vertices + shipStruct.verticesPos;

116 % Compute center of gravity (cog) from vertices (geometric center)

117 cog = [(max(vertices(:, 1)) + min(vertices(:, 1))) / 2, ...

118 (max(vertices(:, 2)) + min(vertices(:, 2))) / 2, ...

119 (max(vertices(:, 3)) + min(vertices(:, 3))) / 2];

120 cog = cog + cogOffset;

121

122 [facePoints , faceAreas , normals] = calculatePointsAreasNormals(vertices);

123

124 disp('Boat loaded!');

125

126 % ------------------------------- Define time update model and simulate ---

127 disp('3) Simulating states through time ...');

128

129 % ----- Define update matrices A and B (C is arbitrary) and discretize.

130 % x y z v_u v_v v_w phi th psi w_phi w_th w_psi

131 A = [0 0 0 1 0 0 0 0 0 0 0 0;

132 0 0 0 0 1 0 0 0 0 0 0 0;

133 0 0 0 0 0 1 0 0 0 0 0 0;

134 0 0 0 -0.5* C_du*ro*Au/M 0 0 0 0 0 0 0 0;

135 0 0 0 0 -0.5* C_dv*ro*Av/M 0 0 0 0 0 0 0;

136 0 0 0 0 0 -0.5* C_dw*ro*Aw/M 0 0 0 0 0 0;

137 0 0 0 0 0 0 0 0 0 1 0 0;

138 0 0 0 0 0 0 0 0 0 0 1 0;

139 0 0 0 0 0 0 0 0 0 0 0 1;

140 0 0 0 0 0 0 0 0 0 -B_phi/(Iu) 0 0;

141 0 0 0 0 0 0 0 0 0 0 -B_th/Iv 0;
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142 0 0 0 0 0 0 0 0 0 0 0 -B_psi/Iw];

143

144 % F_x/M F_y/M F_z/M Tau_x/Ix Tau_y/Iy Tau_z/Iz

145 B = [ 0 0 0 0 0 0; % x dot

146 0 0 0 0 0 0; % y dot

147 0 0 0 0 0 0; % z dot

148 1 0 0 0 0 0; % v_u dot

149 0 1 0 0 0 0; % v_v dot

150 0 0 1 0 0 0; % v_w fot

151 0 0 0 0 0 0; % phi dot

152 0 0 0 0 0 0; % th dot

153 0 0 0 0 0 0; % psi dot

154 0 0 0 1 0 0; % w_phi dot

155 0 0 0 0 1 0; % w_th dot

156 0 0 0 0 0 1]; % w_psi dot

157 C = [1 0 0 0 0 0 0 0 0 0 0 0;

158 0 1 0 0 0 0 0 0 0 0 0 0;

159 0 0 1 0 0 0 0 0 0 0 0 0];

160 sys = c2d(ss(A, B, C, []), Ts);

161

162 % ----- Define reference states and initialize other variables

163 refSpeedU = getVelMetPerTs(shipStruct.refSpeedU , Ts); % m/Ts

164 refYaw = shipStruct.refYaw;

165 extraUForce = 0;

166 extraYawTorque = 0;

167 cogVec = zeros(length(tVec), 3);

168

169 % ----- Initialize all states and set 1st state

170 states = zeros(12, length(tVec));

171 % [x y z ],[v_u v_v v_w phi th psi w_phi w_th w_psi]'

172 states(:, 1) = cat(2,[cog (1) -cog(2) -cog(3)],shipStruct.x0)';

173

174 % ----- Rotate facePoints & normals according to initial states

175 phi = states(7, 1); th = states(8, 1); psi = states(9, 1);

176 facePoints = (R(phi , -th, -psi)' * (facePoints - cog) ')' + cog;

177 normals = (R(phi , -th, -psi)' * normals ') ';

178

179 % ----- State update for all time steps

180 for tIdx =1: length(tVec)-1

181 cogVec(tIdx , :) = cog;

182 % ------- Compute sum of all forces F_net & sum of all torques Tau_net

183 F_net = zeros(3, 1);

184 Tau_net = zeros(3, 1);

185 for nIdx =1: length(normals)

186 % Get index of waves that is closest to the evaluated normal

187 xIdx = round(facePoints(nIdx , 1));

188 yIdx = round(facePoints(nIdx , 2));

189 facePointHeight = facePoints(nIdx , 3);

190 % Add netto component if wave is above the considered normal

191 if waves(yIdx , xIdx , tIdx) > facePointHeight

192 % Force

193 h = waves(yIdx , xIdx , tIdx) - facePointHeight;

194 volume = h * faceAreas(nIdx);

195 F_buoy = (ro * g * volume) * normals(nIdx , :) ';

196 F_net = F_net + F_buoy;

197 % Torque

198 lever = (facePoints(nIdx , :) - cog)';

199 phi = states(7, tIdx); th = states(8, tIdx); psi = states(9, tIdx);

200 Tau = cross(R(phi , -th, -psi) * lever , R(phi , -th, -psi) * F_buoy);

201 Tau_net = Tau_net + Tau;

202 end

203 end

204

205 % ------- Set up input

206 phi = states(7, tIdx); th = states(8, tIdx); psi = states(9, tIdx);

207 v_u = states(4, tIdx);

208 extraUForce = Ki_force * extraUForce + pRegulator(Kp_force , refSpeedU , v_u);

209 addedMass = v_u * K_addedMass;

210 forcesInLocalCoord = R(phi , -th, -psi) * [F_net (1)/(M + addedMass); -F_net (2)/M; -F_net (3)/M + g] ...
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211 + [extraUForce; 0; 0];

212

213 extraYawTorque = Ki_torque * extraYawTorque + pRegulator(Kp_torque , refYaw , psi);

214 torqueInLocalCoord = [Tau_net (1)/Iu; -Tau_net (2)/Iv; -Tau_net (3)/Iw] ...

215 + [0; 0; extraYawTorque ];

216

217 inputs = [forcesInLocalCoord ' torqueInLocalCoord ']';

218

219 % ------- Time -update

220 v_u= states(4, tIdx); v_v= states(5, tIdx); v_w= states(6, tIdx);

221 w_phi = states (10, tIdx); w_th = states (11, tIdx); w_psi = states (12, tIdx);

222 velInGlobalCoord = R(phi , th, psi)' * [v_u; v_v; v_w];

223 rotVelDerivative = T(phi , th) * [w_phi; w_th; w_psi];

224

225 coriolisV = cross([w_phi , w_th , w_psi]',[v_u , v_v , v_w]');

226

227 % Make time -update as below due to non -linearities in the A matrix

228 states(:, tIdx +1) = [states(1,tIdx) + sys.A(1,4) * velInGlobalCoord (1);

229 states(2,tIdx) + sys.A(2,5) * velInGlobalCoord (2);

230 states(3,tIdx) + sys.A(3,6) * velInGlobalCoord (3);

231 sys.A(4,4) * states(4,tIdx) - Ts * coriolisV (1);

232 sys.A(5,5) * states(5,tIdx) - Ts * coriolisV (2);

233 sys.A(6,6) * states(6,tIdx) - Ts * coriolisV (3);

234 states(7,tIdx) + sys.A(7,10) * rotVelDerivative (1);

235 states(8,tIdx) + sys.A(8,11) * rotVelDerivative (2);

236 states(9,tIdx) + sys.A(9,12) * rotVelDerivative (3);

237 sys.A(10 ,10) * states (10,tIdx);

238 sys.A(11 ,11) * states (11,tIdx);

239 sys.A(12 ,12) * states (12,tIdx)] + sys.B * inputs;

240

241 % ------- Update ship hull

242 deltaX = states(1, tIdx +1) - states(1, tIdx);

243 deltaY = states(2, tIdx +1) - states(2, tIdx);

244 deltaZ = states(3, tIdx +1) - states(3, tIdx);

245

246 deltaPhi = states(7, tIdx +1) - states(7, tIdx);

247 deltaTh = states(8, tIdx +1) - states(8, tIdx);

248 deltaPsi = states(9, tIdx +1) - states(9, tIdx);

249

250 % Rotate facepoints and normals with R'

251 facePoints = (R(deltaPhi , -deltaTh , -deltaPsi)' * (facePoints - cog) ')' ...

252 + cog + [deltaX -deltaY -deltaZ ];

253 normals = (R(deltaPhi , -deltaTh , -deltaPsi)' * normals ') ';

254 cog = cog + [deltaX -deltaY -deltaZ ];

255 end

256 disp('Simulation done!');

257 toc;

258

259 % ------------------------------- Plot states through time ----------------

260 if isPlot

261 plotShipStates(states , tVec , Ts, beta);

262 plotHelipadStates(states , tVec , Ts, beta , shipStruct.helipadPos);

263 end

264 % ------------------------------- Visualize simulation in 3D --------------

265 if isVisual

266 visualizeSimulation(states , waves , xVec , yVec , tVec , faces , vertices , cogVec);

267 end

268

269 %% Help functions

270 function [facePoints , faceAreas , normals] = calculatePointsAreasNormals(V)

271 j = 1;

272 for i=1:3: length(V)-2

273 facePoints(j, :) = [mean(V(i:i+2,1)), mean(V(i:i+2, 2)), mean(V(i:i+2, 3))];

274 faceAreas(j) = areaOfFace(V(i:i+2,1), V(i:i+2, 2), V(i:i+2, 3));

275 p0 = V(i, :) ';

276 p1 = V(i+1, :) ';

277 p2 = V(i+2, :) ';

278 n = cross(p0-p1, p0-p2)' ./ norm(cross(p0-p1, p0-p2)');

279 normals(j, :) = -n; % The normal of the face
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280 j = j + 1;

281 end

282 facePoints(isnan(facePoints)) = 0;

283 normals(isnan(normals)) = 0;

284 end

285 function T = T(phi , th)

286 % Gustafsson , "Statistical Sensor Fusion" 3rd edition

287 % Eq. (13.9) , p. 349

288 T = [1 sin(phi)*tan(th) cos(phi)*tan(th);

289 0 cos(phi) -sin(phi);

290 0 sin(phi)/cos(th) cos(phi)/cos(th)];

291 end

292 function regulation = pRegulator(Kp, refValue , currentValue)

293 % Simple P-control of speed.

294 regulation = Kp * (refValue - currentValue);

295 end

296 function velMeterPerTs = getVelMetPerTs(vel , Ts)

297 % Gets a velocity in m/s and returns a velocity in m/Ts

298 velMeterPerTs = vel * Ts;

299 end

Listing 6: Full file that simulates ship on waves: simulateShip.m.
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