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Abstract—In this study, we compare how the architectural
differences of attention-based and convolution-based models
affect the ability of the models to identify out-of-distribution
(OoD) data when performing image classification. The ap-
proach was to select models with different levels of usage of
attention and convolution and compare their performances on
identifying OoD data. The key contributions of this work are a
semantic OoD dataset based on ImageNet-21k, ImageNet-1K,
and Wordnet; a performance comparison of several models on
detecting OoD data using softmax, entropy of softmax, and
temperature scaling.

I. INTRODUCTION

The presence of false positives in image classification is
a reoccurring problem in computer vision applications. This
problem makes itself even more present in an open-world
setting, where the test images might not belong to the finite
set of classes that the model has been trained to recognize.
It is, thus, crucial to implement robust errors that avoid the
error of classifying an unknown object as if it belonged to
a known class.

The particular attention-based architectures, such as Vi-
sion Transformers (ViTs) [1], have recently attracted atten-
tion in computer vision and achieved comparable results
to convolutional neural networks (CNNs) for tasks such
as image classification. However, unlike convolution, the
role of attention in the performance of classifying OoD
data is poorly studied. In this work, we study the role of
the architectural differences of attention and convolution in
successfully detecting semantic and non-semantic shifts in
OoD data. Our experiments show that, in OoD detection
tasks, hybrid vision transformers are comparable to ResNet
and EcaResNet with around four times as many parameters.

Note that the terminology found in ODIN [2] to separate
OoD data into semantic and non-semantic shifts will be
used; semantic shifts are synonymous with different classes
and non-semantic shifts are synonymous with shifts within
the same class, e.g. texture shifts, sketches, etc. Figure 1
shows a clear view of the difference between semantic and
non-semantic.

II. RELATED WORK

A. Out-of-distribution detection

Out-of-distribution detection is a well-known yet poorly
solved problem when it comes to machine learning models.
In [3], Zhang et. al show that ViTs outperform CNNs in
generalizability under different groups of distribution shifts,

Figure 1: Semantic vs non-semantic shifts in OoD data.
Taken from [2].

all of which are non-semantic, but none of their experi-
ments takes into account semantic shifts. In [4], Fort et. al
compare three OoD detection methods including maximum
over softmax probabilities (MSP), Mahalanobis distance,
and outlier exposure over different models from MLPMixers
to ViTs. They categorize OoD data in two groups: far-OoD
(CIFAR10 and SHVN) and near-OoD (CIFAR10 and CI-
FAR100). However, they do not distinguish between seman-
tic and non-semantic distribution shifts. Generalized ODIN
[2] uses temperature scaling and input pre-processing to
improve softmax probabilities’ reliability for OoD detection.
However, it does not evaluate attention-based architectures’
performance in its experiments. This paper classifies OoD
shifts in two groups: non-semantic shifts resulting in samples
with the same object as ID data but different styles, and
semantic shifts consisting of samples belonging to categories
unseen during training. We used the same terminology in this
work.

B. Out-of-distribution dataset

ImageNet-O [5] consists of semantically shifted samples
collected from ImageNet-21K images classified by ResNet-
50 as an ImageNet-1K class with high confidence. However,
this data curation strategy makes this dataset biased in favor
of models other than ResNet-50. Unlike ImageNet-O, our
OoD dataset only depends on the semantic distance of
chosen classes from ImageNet-1K classes.

Regarding OoD samples with non-semantic shifts, we
found ImageNet-R [6] which is a collection of images from
200 categories of ImageNet-21K but with different styles
such as cartoon, graffiti, painting, line drawing, etc. We used
this dataset for our experiments around non-semantic shifts.



C. Model comparison

In [7], the authors compare ViTs’ robustness to input and
model perturbations taking ResNet as a baseline. Despite
extensive studies, they only consider non-semantic shifts.

III. METHOD

The solution that was chosen to approach the problem
of understanding how attention and convolution affect a
model’s ability to detect OoD data was composed of five
steps, which will be presented in the sections to follow.

A. Construction of a semantic OoD dataset

To evaluate the models’ ability to detect non-semantic
OoD data, we needed to construct a non-semantic OoD
dataset ourselves. As named in the introduction, ImageNet-O
is not an appropriate non-semantic dataset, as it consists of
semantically shifted samples collected from ImageNet-21K
and classified by Resnet as ImageNet-1K classes with high
probability. The classes in ImageNet-O are those that Resnet
performs the worst in them, making comparisons between
Resnet’s and other models’ ability to detect OoD detection
biased if using ImageNet-O.

The approach used to construct a non-semantic OoD
dataset was to choose classes from ImageNet-21K that were
not present in ImageNet-1k, and that, in addition, were
semantically distant to all the 1000 classes in ImageNet-
1K. The semantical distance was measured using the lexical
database for the English language, Wordnet [8]. The curated
dataset contains roughly 16000 images belonging to 98
different classes.

B. Finding appropriate models

The requirements for the models we wanted were that
they were all trained on ImageNet-1K, that they had a
similar amount of parameters, and that their architectures
belonged to diverse architectures from linear, to convolution,
and attention.

To have a full spectrum of model types, we decided to
compare models from fully feed-forward through convolu-
tional, ending on the attention-based vision transformer. The
first model is MLPMixer-B16 [9], which has only multi-
layer perceptrons, that are repeatedly applied across either
spatial locations or feature channels. It consists of per-patch
linear embeddings, mixer layers, and a classifier head. Our
fully convolutional model is ResNet-50 [10]. The main idea
behind this model is to introduce a shortcut connection
that turns the network into its counterpart residual version.
Another model that we considered is ECAResNet, which is
a convolution and attention-based architecture [11]. It intro-
duces the efficient channel attention (ECA) module with no
channel dimensionality reduction, cross-channel interaction,
and having fewer parameters than other attention modules,
consisting of 1x1 convolutions layers generating channel
weights. This attention mechanism differs from the purely

attention-based model tested by us: DeiT-S [12]. DeiT is a
convolution-free transformer that was created by distilling
information from a convolutional network with the teacher-
student approach. It obtains better results than ResNet while
having the same amount of parameters. We have chosen
DeiT over ViT because ViT’s true capability is revealed only
when trained on large datasets like ImageNet-21k. Another
model candidate was the hybrid vision transformer which
consists of ViT on top of ResNet backbone as explained
in [13]. However, we were unable to find any version of
this model pre-trained on ImageNet-1k with a number of
parameters comparable to other candidates. Thus, we kept
the four previous models as the core models in our work but
also considered two versions of the hybrid model: R+Ti/16
(Hybrid Tiny ViT), and R26+S/32 (Hybrid Small ViT).

To ensure the core models are comparable concerning
their size and capacity, we choose model versions with the
same amount of parameters, as suggested in the robustness
study by Bhojanapalli et. al [7]. Table I summarizes the sizes
of the models used in our experiments.

C. Image classification on ID and non-semantic OoD data

The chosen models were evaluated on both ID data and
non-semantic OoD data, and compared with respect to the
precision, recall, and f1-score performance metrics. The ID
data is made of the 50000 images of the validation set
of ImageNet-1K, while the non-semantic OoD dataset is
the ImageNet-R dataset containing 30000 images of 200
different ImageNet-1k classes.

The goal of this experiment is to get a better under-
standing of how the models perform on ID data, as the
performance of a model on ID data is believed to be a strong
predictor of the performance on OoD data [14].

D. OoD detection on semantic and non-semantic OoD data

We compared the reliability of the models’ softmax prob-
abilities in presence of semantic and non-semantic OoD
data based on three different strategies: maximum of raw
softmax probabilities, the entropy of softmax probabilities,
and maximum of softmax probabilities with temperature
scaling [15]. We chose these methods due to their simple
and intuitive approach and the fact that they don’t require
further parameter optimization. In each of the settings, the
performance metrics used to compare the models are the
area under the ROC curve and false positive rate when the
true positive rate is 90%.

In the first setting, we use the maximum of raw softmax
probabilities. Ideally, the maximum probability obtained by
the model should be on average high for ID samples and low
for OoD ones, i.e the model should be more certain of its
prediction for ID samples than OoD samples. As a result by
thresholding this probability, we can evaluate the reliability
of the model’s certainty of its prediction in presence of OoD
data.
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Model MLPMixer-B16 ResNet-50 ECAResNet-50D DeiT-S R+Ti/16 R26+S/32
# Params 22M 25M 25M 22M 6.4M 36.6M

Table I: Parameters by models

In a second setting, we used temperature scaling as done
in ODIN [15]. ODIN combines temperature scaling with
input pre-processing which requires further optimization of
pre-processing parameters. Here we only use temperature
scaling to calibrate the softmax results. Ideally, the tempera-
ture used for calibration should be optimized for each model.
However, due to our limited computational resources we
used the same temperature for all models as done in ODIN
experiments [15]. Similar to the first setting the prediction is
based on maximum softmax probability. Equation 1 shows
how the softmax probability is computed using temperature
scaling for the ith class among N classes, given input x and
temperature T .

Si(x;T ) =
exp(fi(x)/T )∑N
j=1 exp(fj(x)/T )

(1)

Finally, inspired by Tent [16], we used entropy of softmax
probabilities. Higher entropy indicates higher uncertainty.
So we expect the entropy of softmax probabilities to be
higher for OoD data. Tent minimizes entropy using input
pre-processing which requires optimization. Here we only
use the entropy of the resulting probability distribution.

IV. EXPERIMENTS

In this section, the experiments performed in this study
are presented. We used pre-trained weights provided in the
timm library [17] for all models. In all experiments with
temperature scaling, we followed the same setting as ODIN
[15] and used T = 1000.

A. Image classification on ID data

Table II shows the performance metrics precision, recall,
and f1-score for the four core and the hybrid models trained
on ImageNet-1k when performing image classification on
the 50000 images of the validation set of ImageNet-1k.

In this experiment, ECAResNet has the highest overall
precision, recall, and f1-score among core models. Re-
member that ECAResNet has both convolution and channel
attention layers as parts of its architecture.

B. Image classification on non-semantic OoD data

Table III shows the performance metrics of the four
models when running image classification on ImageNet-R.

Observe that the precision of all models is roughly three
times larger than the corresponding recall. This is explained
by the fact that the models are generally reticent in cor-
rectly classifying (non-semantically) shifted images since the
distribution shifts have not been seen during training. The
precision metrics are high since the model has seen similar

Models
Metrics Precision ↑ Recall ↑ f1-score ↑

MLPMixer 0.761 0.757 0.754
ResNet 0.762 0.749 0.747

ECAResNet 0.800 0.794 0.792
DeiT 0.777 0.770 0.766

Hybrid Tiny ViT 0.672 0.650 0.649
Hybrid Small ViT 0.810 0.806 0.804

Table II: Performance metrics for models trained on ImageNet-
1k when classifying the 50000 validation images of ImageNet-1k.
↑ indicates higher values are better. ↓ indicates lower values are
better.

objects during training, and some of the shifts might still
be close to the non-shifted objects. When it comes to the
recall metrics, its low values are explainable since the model
misses to correctly classify non-semantically shifted images
since their modalities (sketch, graffiti, etc.) have not been
seen during training.

Another observation to draw from this experiment is
that, similarly as in the evaluation of ID data, ECAResNet
delivers the highest overall metrics compared to the three
other core models.

Models
Metrics Precision ↑ Recall ↑ f1-score ↑

MLPMixer 0.734 0.249 0.348
ResNet 0.803 0.283 0.396

ECAResNet 0.804 0.309 0.423
DeiT 0.783 0.299 0.409

Hybrid Tiny ViT 0.694 0.148 0.227
Hybrid Small ViT 0.831 0.344 0.461

Table III: Performance metrics for the models when fed with the
non-semantic OoD data of ImageNet-R.

C. OoD detection using semantic OoD data

In this experiment, we perform a binary classifica-
tion, where a positive prediction means the image is in-
distribution and a negative means the object is out-of-
distribution. We fed the models with 66000 images, of which
16000 are semantic OoD data and 50000 are ID data from
the validation set of ImageNet-1K.

The prediction values for each image – which will be
then be compared to a threshold to get positive or negative
predictions – were calculated as one of the following three
approaches:

• the max probability of the raw softmax probabilities;
• the entropy of the softmax probabilities;
• the max probability of the temperature scaled softmax

probabilities.
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See Figure 2 for the comparison of the models’ ROC
curve when fed with both ID and semantic OoD data
using the three approaches listed above. Comparing the
area under the curve (AUC) for the core models, one can
easily conclude that the ResNet and ECAResNet models
perform the best and that DeiT performs the worst no matter
which approach is chosen. Moreover, despite having fewer
number of parameters, the tiny hybrid ViT obtains similar
performance to ECAResNet when entropy of softmax is
used.

In addition to the ROC curves, we plotted the box plots
for models’ predictions for ID and OoD samples separately.
Ideally, we expect the probability distribution over all classes
to have higher maximum and lower entropy for ID samples.
Table VII shows the difference between the mean of the
prediction values generated by the three methods when the
models are fed with ID and semantic OoD data.

As shown in Table VII, among the four core models,
ResNet has the best performance while DeiT the worst. In
addition, the tiny hybrid ViT outperforms EcaResNet with
four times as many parameters. These results are very close
to what was obtained by comparing models based on their
FPR when TPR = 90%. The box plots can be found in
the appendix VII-A.

Difference of means

Models
Methods Raw softmax↑ Entropy↓ Temp. scaling↑

MLPMixer 0.209 -1.092 1.030e-06
ResNet 0.299 -1.792 1.774e-06

ECAResNet 0.226 -1.024 7.799e-07
DeiT 0.149 -0.652 7.777e-07

Hybrid Tiny ViT 0.228 -1.092 2.445e-06
Hybrid Small ViT 0.325 -1.579 3.722e-06

Table IV: Difference between the mean of the prediction values
of ID data and the mean of the prediction values of semantic
OoD data. The greater the absolute difference, the clearer is the
separation between ID and semantic OoD.

Difference of means

Models
Methods Raw softmax↑ Entropy↓ Temp. scaling↑

MLPMixer 0.164 -0.661 5.284e-07
ResNet 0.308 -2.046 2.045e-06

ECAResNet 0.237 -1.252 9.759e-07
DeiT 0.140 -0.617 7.455e-07

Hybrid Tiny ViT 0.280 -1.516 3.429e-06
Hybrid Small ViT 0.330 -1.805 4.287e-06

Table V: Difference between the mean of the prediction values
of ID data and the mean of the prediction values of non-semantic
OoD data. The greater the absolute difference, the clearer is the
separation between ID and non-semantic OoD.

D. OoD detection using non-semantic OoD data

Similarly to the experiment described in IV-C, we per-
form binary classification of the images where a positive

FPR at 90% TPR ↓

Models
Metrics Raw softmax Entropy Temp. scaling

MLPMixer 0.609 0.687 0.618
ResNet 0.617 0.572 0.627

ECAResNet 0.578 0.691 0.606
DeiT 0.683 0.755 0.712

Hybrid Tiny ViT 0.718 0.578 0.670
Hybrid Small ViT 0.494 0.474 0.392

Table VI: For semantic OoD data: false positive rates (FPR) at
90% true positive rate (TPR). The smaller the FPR at TPR =
90% the better.

FPR at 90% TPR ↓

Models
Metrics Raw softmax Entropy Temp. scaling

MLPMixer 0.624 0.931 0.653
ResNet 0.552 0.596 0.529

ECAResNet 0.548 0.670 0.537
DeiT 0.668 0.803 0.694

Hybrid Tiny ViT 0.615 0.497 0.468
Hybrid Small ViT 0.488 0.522 0.326

Table VII: Non-semantic shift, FPR at TPR = 90%. The smaller
the FPR at TPR = 90% the better.

prediction means the image is in-distribution and a negative
means the object is out-of-distribution. The only difference
compared to the experiment in IV-C is that the used OoD
dataset is ImageNet-R.

Figure 3 shows the comparisons of the models’ ROC
curves and the respective areas. Similar to the results ob-
tained in IV-C, among core models, ResNet and ECAResNet
have the greatest AUC and thus perform best in this setting
where we wish to maximize the true positive rate and
minimize the false positive rate. Also, DeiT performs the
worst together with MLPMixer. In addition, the tiny hybrid
ViT outperforms EcaResNet and has similar performance to
ResNet with four times as many parameters.

V. CONCLUSION AND LIMITATIONS

To conclude, we curated a dataset of images with
ImageNet-21K categories that are not present in ImageNet-
1K and that are within a chosen semantical distance from all
classes in ImageNet-1K using the tree hierarchy of Wordnet.
This dataset can be used as a semantic OoD dataset for
models trained on ImageNet-1k. In addition, over a range
of models from purely linear to purely convolutional and
purely attention-based, we used softmax probabilities in
three different ways to detect OoD samples: maximum of
raw softmax probabilities, entropy of softmax probability
distribution, and maximum of temperature-scaled softmax
probabilities. Our results show that ResNet and ECAResNet
outperform MLPMixer and DeiT in presence of both se-
mantic and non-semantic OoD samples. We also found that,
apart from MLPMixer, models detect non-semantic shifts
easier than semantic shifts. Finally, our experiments show
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Figure 2: ROC curves of the models when fed with ID and semantic OoD data. The black dash line represents random
guessing, and the green horizontal line illustrates TPR = 90%.

Figure 3: ROC curves of the models when fed with ID and non-semantic OoD data. The black dashed line represents random
guessing, and the green horizontal line illustrates the true positive rate 90%.

that hybrid vision transformers perform as good as ResNet
and EcaResNet with four times as many parameters in
OoD detection tasks. Nevertheless, based on our results, no
conclusion can be made about the superiority of convolution
or attention-based architectures in presence of OoD data
at inference time. Further studies on a more diverse set
of models should be conducted. In addition, evaluating the
models on ImageNet-1k test set instead of the validation set
would result in a more realistic understanding of models’
performance as the stopping criteria of the training process
might depend on the validation set. However, this should not
affect how models compare to one another.

Due to our limited computational resources, we did not
use OoD detection methods that require optimization. Future
work can take into account such methods. Moreover, A
comparison between uni-modal (image only) and multi-
modal (image and text) models’ performance in presence
of OoD data would be a valuable contribution to this work.

VI. INDIVIDUAL CONTRIBUTIONS

Bernat constructed the semantic OoD dataset using Word-
net, assisted Mamooler with the code for the evaluation of
the models for ID data, and implemented the performance
metrics of the semantic OoD evaluation. Mamooler found
the hybrid models, implemented the evaluations on the
semantic and non-semantic OoD data, ran the OoD detection
experiments, and studied how the predictions using tem-

perature scaling and entropy perform compare to softmax.
Mlyniec found the the core models, set up the clusters, and
led the work related to parallelizing the evaluation code.
All the authors contributed equally to the conception of this
report.
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VII. APPENDIX

A. Prediction Distribution

In this section, we provide the box plots of prediction
distributions for different models and OoD detection meth-
ods. They were used to evaluate the assumption that, in
general, maximum and entropy of softmax probabilities are
respectively higher and lower for ID samples.

Figures 4, 5, and 6 illustrate the box plots of model
prediction when using raw softmax probabilities, entropy,
temperature scaling respectively for semantic distribution
shifts. Figures 7, 8, and 9 illustrate the box plots of model
prediction when using raw softmax probabilities, entropy,
temperature scaling respectively for non-semantic distribu-
tion shifts.

The further apart the means of the prediction values of the
ID and OoD data are, the fewer errors the model will commit
when the prediction values are compared to a threshold.
Ideally, there would be no overlap between the prediction
values of ID and OoD data. Comparing the medians of the
prediction values given by the models when evaluating ID
and OoD data would be more robust to outliers, but such a
comparison has not been made.
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Figure 4: Maximum probability distribution of the models when fed with ID and semantic OoD data.

Figure 5: Entropy distribution of the models when fed with ID and semantic OoD data.
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Figure 6: Maximum temperature scaled probability distribution of the models when fed with ID and semantic OoD data.

Figure 7: Maximum probability distribution of the models when fed with ID and non-semantic OoD data.
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Figure 8: Entropy distribution of the models when fed with ID and non-semantic OoD data.

Figure 9: Maximum temperature scaled probability distribution of the models when fed with ID and non-semantic OoD
data.
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