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Abstract

Object detection and tracking for moving objects such
as humans can be implemented by applying background
modeling to segment out the foreground that is then tracked
throughout a video sequence. Median filtering is concluded
as limited compared to Gaussian mixture models as a back-
ground model. For the tracker, simple overlap scores match-
ing proves to work well except for the case of occluded ob-
Jects. For tracking occluded objects, keypoint matching can
be used to estimate displacements.

1. Introduction

This report contains a description of the techniques and
implementation details of a tracking system. The goal of the
constructed system was to track objects — mainly humans —
through image sequences, while addressing problems such
as shadows, occlusion and spurious motion.

The assumptions made are that both the cameras and the
background are static, and that the humans are moving on a
flat ground plane.

1.1. Pipeline

The system is constructed in a modular manner, where
each module has a well defined responsibility. The modules
are: data reading, background modeling, foreground seg-
mentation, tracking and evaluation. The data reading mod-
ule is responsible for reading the image sequences. Back-
ground modeling creates a binary image representing fore-
ground and background, and also filters shadows. Fore-
ground segmentation removes noise and detects newly ap-
peared objects. The task of the tracking module is to re-
assign id’s of reappearing objects and this way track them
through the image sequence. Lastly, the evaluation mod-
ule evaluates the tracking in the current image sequence by
comparing the achieved id’s to the known ground truth.

Matheus Bernat
Linkoping University

matvi959@student.liu.se

Viktor Ivarsson
Linkoping University

vikiv480@student.liu.se

Alejandro Garcia
Linkoping University
alega478@student.liu.se

2. Background Modeling

This module has two main responsibilities: to create a
binary image representing foreground and background (aka
background model), and to filter shadows. Creating a back-
ground model was initially done with Median Filtering, and
later with the more complex method of Gaussian Mixture
Models (GMM). This part of the pipeline largely followed
J.Woods thesis [1]].

2.1. Median Filtering

Median filtering is an algorithm that approximates the
median for each pixel value over time. For each time ¢ and
for each pixel value x;, the median m, is updated by equa-
tion[T} where « is the learning rate.
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The background is then segmented by thresholding the
deviation from the median, in other words: |z; — m:| < T
where 7' is the threshold value. While implementing this for
gray-scale images, there were a couple of problems since
some objects in gray-scale are quite similar to the back-
ground, hence they will not get differentiated from the back-
ground. In Figure [T and Figure 2] we present the compar-
ison between gray-scale median filtering and three channel
RGB median filtering.

One of the choices we had to make was how to initialize
the median. In our case we decided on initializing the me-
dian as the values in the first frame. This created some prob-
lems during the first few frames as the first frame usually in-
cluded some foreground as well as background. This led to
the median fitting to the foreground object and hence, once
the object moved, the background would be recognized as
foreground, as we see in Figure 3]



Figure 1: Example of median filtering using gray-scale im-
ages.

Figure 2: Example of median filtering using RGB channels
in images.

Figure 3: Example of problems in initialization for median
filtering.

To combat this, o was set quite high to let the median
adapt away from the first frame faster. This led to problems
when one object stayed in the same pixel area for a long
time as the median would converge to their values. In a
real world scenario this would not be a problem as a low «
would model the median quite well over a long time. Due
to the limited potential of median filtering we moved on to
try modeling the background with GMM.

2.2. Gaussian Mixture Modeling

Mixture model is a probabilistic model used to identify
clusters from the original data. In this project, Gaussian
function is used as a mixture component. Each pixel has its
own one-dimensional GMM and it is online-updated.

For x; denoted a pixel value at time ¢, its GMM is up-
dated. The way it is updated depends on whether there is

any mixture component matched with z;. To do so, the dis-
tance between z; and the K number of Gaussian mixture
components needs to be estimated and this can be done by
using Mahalanobis distance:
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With the estimated distance dj, evaluating if x; is

matched with the K-th Gaussian or not is as follows given

A= 2.5:

0 ifdg >\

L ifd < REL2Z LKL O

matchy = {

If there is no mixture component which is matched with
x4, a new mixture component with 4 = z, and 02 = 02 ,, is
going to be added to the mixture model with a small mixture
density wipi.

If there are more than one mixture component matched
with z;, then one mixture component among them should
be selected because only one mixture component is updated
at a time.

To select the mixture component that is going to be up-
dated, let m be used to indicate m-th mixture component
that is matched. m is computed as follows:

w
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In order to estimate the parameters for the selected m’th
Gaussian mixture component with respect to x;, a clas-
sic approach could have been used, namely the expectation
maximization (EM) algorithm. However, to implement the
exact algorithm is cumbersome so we used a more suitable
algorithm which is derived from the EM algorithm. The al-
gorithm is called the Stauffer and Grimsons algorithm[2].
The Stauffer and Grimsons algorithm is based on the EM
algorithm but with much simpler computations that were
adapted specifically for the background mixture models that
can be updated online. The update for m-th mixture compo-
nent will be done as follows (where o denotes the learning
rate):
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The mixture densities should be always summed up to
1. Therefore after updating w,,, the mixture densities have
to be re-normalized to be summed up to 1. However, there
is a risk when two new mixture components are added in a

row from z; to ;1 due to the re-normalization step. The



mixture densities will become w, < wg41. In order to
avoid this, the re-normalization is only done for all mixture
densities except m-th mixture component.

The mixture components with their mixture den-
sity, mean and variance should always be kept
sorted in a descending order corresponding to

w1 w2 WK 1
(\/||a§||’\/||a§||’\/\|a§<||) where K is the number

of mixture components that the GMM is composed of.
Once the sorting is complete the threshold mixture com-
ponent is calculated as
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If any mixture component from the first to the B-th
matches with x;, then x4 is determined to be background;
otherwise, if there is no match, then z; is classified as fore-
ground.

2.2.1 Pre-processing

The background segmentation has some issues to be han-
dled. For instance, some pixels can be classified as fore-
ground if the camera is not perfectly stationary but has a mi-
nor movement, although indeed, they are background. An-
other example is a tree with leaves that are swaying in the
wind. It is true that something is going on in regards to the
pixels where the leaves are. But in this project those kind of
situations are managed by using low-pass filtering. As the
result shown in Figure [ and [5] with this pre-processing of
the data, we can exclude some of the spurious background
motions.

2.2.2 Comparison to median filtering

By comparing the results using GMM to those with me-
dian filtering, we concluded that GMM does not depend
as much on an optimal « as median filtering is. There is
a dilemma using median filtering when it comes to decid-
ing « as shown in Figure [f] The result using GMM can
be viewed in Figure [/| and as can be seen, the problem of
deciding alpha is absent. In other words, the detected fore-
ground objects do not change into background as quickly as
in median filtering and the traces of movement from objects
or people from the first frame and onward for few frames
adapt to the change in intensity over time quicker.

2.3. Shadow Suppression

Shadows are detected as part of the motion in the image,
so they end up interfering in the background modelling and
are undesirably set as part of the foreground.

Figure 4: Original image (left) and GMM of the background
without pre-processing (right). Left image contains much
noise.

Figure 5: Original image (left) and GMM of the background
with pre-processing (right). The noise is decreased, espe-
cially on the edges of windows on the top left of the image.

2.3.1 Use of the HSV color space

After the background model has created a binary image rep-
resenting foreground and background it is possible to filter
potential shadowed pixels by comparing the HSV field val-
ues. The HSV (Hue, Saturation, and Value) model is a gen-
eralization of the RGB model; with it we can carry out the
hypothesis that a shadowed pixel will generally decrease in
saturation and lightness value while the hue will remain rel-
atively constant. The following shadow mask can be ap-
plied:

1 ifa<®L<p

Tb, L
Nrfs —Tps < Ts 7
Nagg —xpm| < Th

0 otherwise ,

Sp =

where z; is a current foreground pixel and x is a back-
ground pixel in the previous frame, and L denotes lightness
in the HSV channel, S, saturation, H, hue. Pixels that do
not meet the conditions will be set as background in the
binary image (as zero). The rest are threshold hyperparam-
eters, which after several tests have been setto = 0.3, 3 =
0.9, 7, = 0.3, 77 = 0.5 to give reasonable results. Note that
this method can split big objects into smaller ones, which
eventually will make many bounding boxes to become true
positives and false positives.



Figure 6: Original RGB image (left); After median filtering
with o = 6 (middle); After median filtering with o = 1
(right). The red rectangles show that the pixels are changed
into background. The green rectangles contain traces of
people due to their movement made from the first frame and
onward for a few frames.

Figure 7: Original RGB image (left) and GMM with o =
0.01 (right).

Figure 8: Original RGB image (left) and GMM (right). Red
rectangles show some parts of the foreground objects are
lost. Blue rectangle shows the foreground object is detected
without any lost part.

2.3.2 Horprasert method

The statistical approach for real-time background subtrac-
tion and shadow detection from Thanarat Horprasert, David
Harwood and Larry S. Davis exploits the facilities of the
RGB color space. Consists on measuring the distortion of
a pixel’s RGB color value in a current image that we want
to subtract from the background, from the pixel’s expected
RGB color in the reference or background image. This is
simply done by decomposing the distortion measurement
into two components, which they call brightness distortion

Figure 10: Example of MOT-09 without shadow supression.

100
200
300 -§ :
400

500

0 200 400 600 800

Figure 11: Example of MOT-09 with shadow supression.

and chromaticity distortion. Their model is based on the
empirical observation that shadowed pixel values tend to
follow straight lines connecting the values and the origin
in the RGB color space. Basically brightness distorsion
would be the deviation of a pixel value in the background
image that brings the observed color close to the expected



chromaticity line, and the chromaticity distorsion is pixel
values deviation perpendicular to the distance between the
observed color and the expected chromaticity line.

3. Foreground Segmentation

This module performs noise removal followed by mark-
ing the connected regions as objects, and assigning those
objects a new id. The removal of noise is done through
morphological operations of the image, and the detection of
regions as likely objects is done through connected compo-
nent analysis.

3.1. Morphological image processing

In order to reduce noise from the background modeling
we use morphological image processing. There are two
different basic morphological operations dilation and ero-
sion. When dilation is performed objects are expanded,
while erosion will shrink objects. There is compound oper-
ations such as opening and closing which is a combination
of the two basic operations. Opening is defined as erosion
followed by dilation while closing is defined as dilation fol-
lowed by erosion. The opening operation can be used to
reduce the amount of noise such as small objects and spurs
on larger objects in a binary image. The closing operation
can be used to fill holes in objects.

For the basic morphological operations a structuring el-
ement is needed, it’s possible to use many different shapes
and sizes. We went with a 3x3 squared structuring element.
To perform erosion with a 5x5 structuring element all we
had to do was perform erosion twice with a 3x3 kernel,
three times for 7x7 and so on. The result of this part of
the pipeline can be seen in Figure|12] [3].

Figure 12: Original binary image (left) and image after the
morphological image processing (right).

3.2. Connected component labeling

The image where we want to label objects is a binary
image, therefore we chose to use connected component la-
beling (CCL) to identify objects. We looked at other op-
tions such as the watershed algorithm [4] but ultimately
decided to go with CCL. There are many implementations

of the CCL, we used the OpenCV default algorithm for 8-
connectivity called Block-Based CCL with Decision Trees.
Basically, the algorithm passes over the image and gives
each 8-connected object a unique label [5].

With the image labeled we can extract the bounding
boxes and apply them to the original image, this is shown in

Figure[[3]

Figure 13: Labeled image (left) and the original binary im-
age with bounding boxed on top (right).

4. Tracking

The task of the tracking module is to track objects
through the given image sequence. By tracking, what is
meant is that an object will be given the same id through-
out the sequence. Among the techniques used in tracking
are Kalman filter for prediction of currently unseen objects
(6] (Section [A.1)), object matching through pixel overlap
(Section[4.3)), and object matching through matching of key
points (Section 4.2).

In short the tracker we develop works like this:

1. Receive identified object bounding boxes for frame

Jit1.
2. Predict the movement of bounding boxes for frame f;

3. Calculate the overlap of the bounding boxes for frame
fi+1 and predicted bounding boxes of frame f;.

4. Deal with seemingly merged bounding boxes by re-
moving them from f; (see Section[4.3).

5. Assign the id’s from f; to bounding boxes in f;41 for
matched objects and set unassigned bounding boxes as
missing.

6. Use key point matching to estimate the movement of
missing bounding boxes and add them to frame f; ;.

4.1. Kalman Filtering

To predict the position of an object, a constant veloc-
ity model is used for the Kalman filter. In two dimensions,
this is given by the state vector s = (pg, py, Uz, vy ), Where



Dz, Py are the x and y coordinates, while v, v, are the re-
spective velocities. Given in state-space form, this gives
equation [8] where 7 is the sample time and v; and e; are
assumed to be zero-mean Gaussian noises with covariances
@ and R respectively:
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Since the positional values of an object are the pixel co-
ordinates of the top left corner of the bounding box, some
problems occur. If the bounding box suddenly changes its
size, it is quite possible that the position of the top left cor-
ner is radically changed compared to the predicted state.
However, we did not encounter significant difficulties with
this. Tracking the center of the bounding box gave similar
problems, so the original tracking was kept.

A Kalman filter could also be used to track the changes in
the bounding box dimensions, but since they could be rad-
ically changing between the frames, the group decided that
it was unnecessary. Tinkering with the parameters of the
Kalman filter such as the process and measurement noise
covariances did not yield big improvements over different
datasets so we ended up deciding on having the noise co-
variances both initialized to 1. The covariance matrix F,
was initialized to 1 for the positional parameters and 0.1 for
the velocities.

4.2. ORB algorithm for key point detection

In order to deal with objects being occluded and thus
not being identified as unique by foreground segmenta-
tion, tracking of keypoints was implemented. The ORB-
algorithm from OpenCV is the one we used. It is similar
to the SIFT and the SURF algorithm, with the advantage of
being free to use and having improved performance [[7].

In summary, the implementation was the following: for
a frame ¢, identify the keypoints in the frame that lie within
the foreground of the binary image. In the same way, de-
tect the interesting keypoints in frame ¢ + 1. Then, through
another OpenCV function (Flann-matcher), match the key-
points from frame ¢ to the keypoints in frame ¢ + 1. See the
matching of the keypoints in Figure[I4] Finally, the matches
were subsequently saved to a scores table for doing object
matching, as described in Section@

4.3. Matching

New objects are compared to old objects using certain
measures. For the case where the matching score is high

Figure 14: Keypoint matchings between two subsequent
frames.

enough, the objects are “matched”, i.e. the new object is as-
signed the id of the old object. The measures used to com-
pare objects are pixel overlap between the bounding boxes
of the objects, and matchings of the keypoints.

The first step of the procedure is to construct a so called
scores table, where the existing objects from the most re-
cent frames are in the rows, and the objects of the current
frame in the columns. For instance, the element 25 of the ta-
ble contains a combined value of the objects bounding box
pixel overlap, and the number of keypoint matches between
object ¢ and new object j. Both the pixel overlap and the
number of keypoint matches are normalized before being
added up together. In the sum of pixel overlap and keypoint
matches, one can weigh them differently depending on how
reliable a measure is in comparison to the other. The second
step of the procedure is, for each new element j, to choose
the element 4 such that ¢ = argmax; table(i, j). Finally,
each new object is assigned the matched object id.

An approach taken in order to avoid smaller objects from
being merged to bigger sized objects was to pop the greater
objects from the list of existing objects. A bigger sized ob-
Jject was defined as an object that had large enough score
with more than one new object, for example if two boxes
had a 40% overlap with a new box. This generally meant
that the smaller objects had been connected as one larger
object by foreground segmentation so this object was re-
moved. Then occlusion management dealt with the tracking
of the box id instead as seen in section 4.4l

4.4. Occlusion management

One method to improve tracking when objects are oc-
cluded was to track the objects with missing matches with
the Kalman filter until it either got a match again and there-
fore a measurement update or reached a maximum amount
of frames missing, where we would then remove the object
completely. This had the problem of not being very accu-
rate most of the time. For model cases, for example, when
a person walks behind a sign with constant speed, it worked
flawlessly, but in most other cases, it tended to not be very
accurate. Since the tracking was done on the top left corner



of the bounding box, it was not very accurate in predict-
ing the movement. It also tended to track small objects that
were mislabeled quite harshly and there would sometimes
be boxes flying around, so we scrapped this idea.

The other method we used instead was to use the key-
point matching to track occluded objects. Once a box did
not have a match, it was assigned as missing. Then for all
the missing boxes we used key point matching for the scene
inside the box. These keypoints then gave a bunch of vec-
tors that could be seen as the movement from one frame to
the other for this object. Taking the median of these vec-
tors to prevent outliers and mismatches, the missing object
would then be moved by this vector. This proved to give a
better result in dealing with occlusions. However, there are
still some problems with it. Sometimes an object would be
split into a large box and a smaller one for the first frame,
and in the next, it would be fully connected. This then re-
sulted in the small box going missing, and due to the key-
point matching, it would stick to this object, even though the
object already had a full bounding box. This method also
cannot deal with full occlusion as there are no key points to
gather in that case.

5. Results

When evaluating the designed tracker, we calculated sev-
eral evaluation metrics. First, we created a score table that
calculated the Jaccard index for every detection compared
to the ground truths. Then we solved the assignment prob-
lem with linear_sum_assignment from scipy.optimize. We
defined a true positive detection (TP) as a detection that has
a Jaccard index of at least 0.2 with its associated ground
truth bounding box. A false positive detection (FP) is de-
fined as a detection with a Jaccard index of less than 0.2 or
a detection that doesn’t have an associated bounding box.
Lastly a false negative (FN) is a ground truth bounding box
that has a Jaccard index less than 0.2 or that is missing an
associated detection. The results are shown in Table [Tl

H Sequence TP FN FP H

MOT17-02 1703 28300 371
MOT17-04 7342 100663 508
MOT17-09 2392 8019 421

Table 1: Basic evaluation metrics.

With these basic metrics we calculate the precision as
% and recall as %. We also calcu-
lated the amount of times the indentity switches for the
detections aswell as the average true positive overlap as

2 Jaccard-index(TP) ye regults are shown in Table

length(TP)
As an example we can see the comparison between the
ground truth and our tracker in Figure [[5] We can see

H Sequence  Precision Recall id switches H

MOT17-02 0.72 0.05 322
MOT17-04 0.77 0.06 701
MOT17-09 0.81 0.22 280

Table 2: Evaluation results.

H Sequence  Precision Recall id switches H
MOT17-02 0.82 0.06 86
MOT17-04 0.94 0.07 182
MOT17-09 0.85 0.23 155

Table 3: Evaluation results.

that our tracker detects large objects well, but it misses the
mother and child at the entrance of the store to the right.

Figure 15: Sequence MOT17-09, ground truth (left) our de-
tections (right).

6. Conclusions

Due to the nature of the data sets, the background mod-
eling was better handled by GMM compared to median
filtering. To further improve the background modeling,
one could consider to pre-process the data. Without pre-
processing the data used with GMM, a problem can arise
if z; (that is supposed to be classified as foreground) is
matched with the background Gaussian. In this scenario,
x; will be classified as background. One possible way to
handle this issue is to manipulate the foreground object in-
tensities.

For tracking, overlap scoring was quite effective and the
prediction step using a Kalman filter slightly improved it.
However, for the occlusion management, a Kalman filter
that assumes constant velocity is not robust enough to stand
up for the challenge. In this case the keypoint matching
gave better results, but would fail once an object was fully
occluded. The solution to the merged boxes problem was
also quite primitive and a more robust solution should be re-
searched on. A research paper Globally Optimal Solution to
Multi-Object Tracking with Merged Measurements [8]] deals
with this problem as well as improves on the matching al-
gorithm by using the Hungarian algorithm [9].
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