
Structure from Motion with known Correspondences

Hoang Tran
Linköping University

hoatr725@student.liu.se

Matheus Bernat
Linköping University

matvi959@student.liu.se

Viktor Ivarsson
Linköping University

vikiv480@student.liu.se

Yunhee Kim
Linköping University

yunki172@student.liu.se

Abstract

A structure from motion system was developed to recon-
struct a 3D model from a data set with known correspon-
dences and a known camera intrinsic matrix. Using the
known information, a reference camera was chosen and
other camera poses were iteratively estimated in relation
to the reference camera using the known correspondences.
New point correspondences were also triangulated in each
iteration to create a sparse 3D point cloud. Additionally,
bundle adjustment was performed during each iteration to
minimize the sum of mean reprojection error for each view.
Finally, a 3D mesh was made to visualize the results and
the camera poses were compared to ground truth data to
evaluate the system.

1. Introduction
This report describes a system that performs 3D recon-

struction of a static scene given images of this scene taken
from different angles. This task is thoroughly studied in the
field of computer vision and known as Structure from Mo-
tion (SfM).

In the specific solution to SfM that this report describes,
some assumptions are made. Firstly, the 3D points depicted
in the images are fixed relative to the world coordinate sys-
tem, i.e., the scene is static. Secondly, likely correspon-
dences between views are known. Thirdly, the internal cam-
era calibration is also known. The 3D positions of the inter-
est points and the camera poses of each view are sought.

The approach used to solve SfM in this report is known
as an incremental approach. Initially, a pair of views is cho-
sen and the essential matrix between the cameras is found,
which then gives the camera pose of the second camera.
Then, for each new image there is, correspondences be-
tween the new image and the old ones are found, from
which one can find the camera pose of the new camera. In

Figure 1: Incremental SfM pipeline.

order to make the reconstruction pipeline more robust, an
optimization problem is solved to refine the camera poses
and the position of the 3D points, what is called bundle ad-
justment. See the described pipeline in figure 1.

The responsibilities in the group were divided in the fol-
lowing manner: Yunhee Kim was responsible for the initial-
ization steps, Matheus Bernat and Viktor Ivarsson for the
extension steps, and Hoang Tran for the bundle adjustment.

The data set used by the authors throughout the solution
of this task was the noise-free dinosaur sequence by the Vi-
sual Geometry Group at Oxford University. It consists of 36
images of a dinosaur toy standing on a turn-table, where all
images are taken with the same camera. The ground truth is
provided as well as 676 interest points and point correspon-
dences between images. See an image from the data set in
figure 2.

2. Initialization
The two initial views have to be chosen in a way that

meets the following criteria: they have to form a long
enough baseline and have enough corresponding points. Af-
ter trying some different pairs from 36 given cameras and

1



Figure 2: Dinosaur toy and interest points.

comparing the result of the triangulation, we decided to pick
camera 1 and 3, for future reference denoted as view A and
view B.

The first camera, which is view A, is set to be the origin
of the world coordinate system. The camera extrinsic of
view B, which is [RB tB ], can be estimated by using the
essential matrix E. The essential matrix can be achieved
by using the five-point algorithm [1], however, due to its
complexity in implementation, a function findEssentialMat
from the OpenCV library [2] is used. We set the function’s
parameters to use the random sample consensus algorithm
(RANSAC) [3] with the threshold equal to 1 in order to find
the best E.

Now that E has been estimated, the rotation RB and the
translation tB can be calculated with the internal constraint.

E = RT
B [tB ]× (1)

tB is the right null vector of E. Therefore, it can be de-
termined from the singular value decomposition (SVD) of
E by taking the right most column in the V matrix. How-
ever, tB is determined only up to an undetermined scaling.
Therefore, we assume two possible translation vectors, t1
and t2 as follows:

‖t1‖ =‖t2‖ = 1, t2 = −t1, where t1, t2 ∈ tB (2)

To guarantee that RB ∈ SO(3), we used the special sin-
gular value decomposition (SSVD). There are two possible
rotation matrices of RB , which are R1 and R2 and they are

defined as follows:

R1 = VWTUT , R2 = VWUT ,W =

 0 1 0
−1 0 0
0 0 1


(3)

Where V and UT are achieved by SSVD of E and W is a
rotation matrix.

The two possible rotation matrices R1 and R2 and two
possible translation vectors t1 and t2 satisfy the internal
constraint described in equation 1. As a consequence, they
form four configurations. This ambiguity is resolved by
checking if the 3D points are in front of both cameras
view A and view B. See algorithm 10.3 in IREG [4].

3. Adding Views
In this section we describe the extension of new camera

views to the reconstruction pipeline. In summary, this step
adds a hitherto unused image to the reconstruction pipeline
by finding the correspondences between it and the already
processed cameras, finds the camera pose of the new camera
and triangulates the correspondences to find the sought 3D
position of the interest positions.

In the first step, a new camera is chosen. This is done by
a simply choosing a camera that lied close (i.e. had a sig-
nificant number of correspondences) to one of the already
processed cameras. This step was simplified in this assign-
ment as the id numbers of the cameras corresponded to the
time in which the picture was taken, so the next camera is
chosen as the camera with the closest id to one of the pro-
cessed cameras. The 2D to 3D correspondences between
the cameras were also found in this step by simply picking
the already triangulated 3D points that were visible by both
cameras.

Given the set of 3D points and its believed 2D projec-
tions, the problem called Perspective-n-Point [5] (PnP) to
estimate the pose of the new camera was employed. A
RANSAC scheme was used when estimating the camera
pose and the associated consensus set, where the consen-
sus set is defined as 3D points whose reprojection errors
are smaller than the threshold of 3 pixels. In order for the
PnP-RANSAC to perform fast, the amount of points used
by RANSAC when estimating the camera pose is the min-
imal amount of 4 points required by the OpenCV function
solvePnPRansac.

Now that the camera matrix of the new view is found
through PnP, the fundamental matrix between the previous
camera and the newly added camera is calculated. Then,
the correspondences of the cameras are triangulated in an
optimal maximum likelihood sense and added to the set of
triangulated 3D points.

Note that the triangulated points can still be outliers since
the epipolar constraint is only necessary and not sufficient.

2



A reasonable criterion to decide if a 3D point is an outlier
or not is to check the age of the triangulated points (i.e. for
how many iterations of the reconstruction pipeline the 3D
point has existed in the set of already triangulated points).
Therefore, for each 2D to 3D correspondence that is not in
the consensus set, either the 3D point is removed if it is
visible for only few cameras, or the 2D projection of the 3D
point is set as invisible from the new camera if the 3D point
is enough aged.

4. Bundle Adjustment

Bundle adjustment is a step performed every time a new
view has been added to the system. What it essentially
does is adjust the camera poses and the positions of the 3D-
points to minimize the reprojection error of these points to
the views. This is done to reduce drift from small, contin-
uous errors. To perform this, the following error function,
sum of mean squared reprojection errors, is minimized:

ε(R, t, x) =
∑
j∈Q

∑
i∈P

vijd
2
PP (yij ,K[Rj |tj ]xi)

Nj
, (4)

where P is the set of 3D points, Q is the set of views, vij is
the visibility of point i in view j, yij is the point i in pixel
coordinates in view j, K[Rj |tj ] is the camera matrix for
view j, xi are the 3D coordinates for point i and Nj is the
amount of visible correspondences in view j. This was im-
plemented in PyTorch using Adaptive Moment Estimation
[6] as an optimizer. The learning rate was set to 0.001 and
we did not optimize over the first view as the reference view
was chosen to be set at the origin. A maximum amount of
iterations was set at 100 and a threshold of 0.001 in loss
between iterations was set to speed up the pipeline. After
summing up the mean square reprojection error for all 36
views, the loss ε ended up at around 3.6 to 3.7, meaning
each view in average had a mean reprojection error around
0.1 pixels.

An additional step correlated to the bundle adjustment is
the WASH1 step. Here the mean reprojection error for each
3D point is calculated and if it reaches a certain threshold it
is removed. Additionally, if a 3D point has moved far during
bundle adjustment, it is also removed. In our case we found
that a good threshold for the mean reprojection error was
around 2 pixels. However, for the movement in the bundle
adjustment step we did not see much point in lowering it
further than 0.2, where it still would not remove any points
when running. Therefore, in our case, it exists more as a
fail safe to catch bad points that the washing steps might
eventually miss.

5. Evaluation
The estimated 3D points and the camera poses are re-

lated to the ground-truth 3D points and camera poses by a
similarity transformation T , which consists of a rotation, a
translation and a scaling:

T ∼
(
sR t̄
0 1

)
. (5)

The rotation is estimated using the algorithm for solving
the special Orthogonal Procrustes Problem (SOPP) in or-
der to guarantee that the estimated R is in SO(3) even for
significant levels of noise. See algorithm 15.2 in IREG [4].
The scaling and the translation are then calculated accord-
ing to the closed formulas in the paper by Horn [7]. The
camera poses are then mapped using the transformation T .

The individual errors of the mapped estimations of the
camera positions relative to the ground truth are defined as

ek =
∥∥tgt,k − tmap,k

∥∥ . (6)

The individual angular errors of the camera orientations
using 3D angular error are

ak = 2 arcsin(

∥∥Rgt,k −Rmap,k

∥∥
√

8
). (7)

The errors are summarized for the entire set of poses
using the mean-absolute errors (MAE) for the two errors
above, where MAE is defined as

MAE =

∑N
i=0‖ek‖
N

. (8)

6. Meshing
The 3D mesh was constructed with Meshlab using

Screened Poisson surface reconstruction [8]. In order to
generate the mesh with Meshlab we structured the point
cloud according to the .ply file standard [9]. An oriented
point cloud as well as an estimated color for each point was
calculated. To get an oriented point cloud we estimate the
normal at all 3D points with the Python library Open3D
[10]. In order to decide the signs of the estimated normal
vectors we added a refinement step which checked the con-
straint:

v̄T n̄ < 0, (9)

where v̄ is the optical axis for a camera and n̄ is the esti-
mated normal vector for a point that is visible by the camera.
Normal vectors which conformed with less than 50 percent
of the cameras that could see the corresponding point were
multiplied by -1 to flip the direction.

3



Figure 3: Triangulated interest points.

7. Results
As a result from the pipeline, the camera poses and the

3D positions of the interest points are found. See in Figure
3 the triangulation of the sparse 3D points, and in Figure 4
and Figure 5 the estimated camera poses compared to the
ground-truth camera poses. In Figure 6 the final result of
screened Poisson surface reconstruction can be seen. The
general shape and color of the dinosaur can be distinguished
but due to it being a sparse point cloud, it lacks some distinct
features of the original model.

The translation error according to equation 6 was
0.06297, and the rotation error according to equation 7 was
0.06546. However, these values should be taken with a
grain of salt as the evaluation was not done entirely by the
correct procedure. There was a problem encountered where

Figure 4: Ground-truth camera poses in red, estimated in
blue.

Figure 5: 3D plot of ground-truth camera poses in red, esti-
mated in blue, as well as their respective viewing directions.

the ground truth rotational matrices were flipped 180 de-
grees along the relative x-axis for each camera, hence they
were all flipped before evaluating the rotational MAE. This
might be due to a bug in our implementation of camera re-
sectioning or a misinterpretation of the camera positions
somewhere in the pipeline. Finally, the whole reconstruc-

4



Figure 6: Resulting mesh viewed in Meshlab.

tion pipeline takes consistently one minute to run, which is
considered as relatively fast by the authors.

8. Conclusions
The SfM problem can be solved robustly with the sug-

gested structure. Slight errors turn up due to estimations and
perhaps the resolution of the data set. Implementing bundle
adjustment through PyTorch proved to be simple and fast.
Different optimizers were tested but Adaptive Moment Esti-
mation was deemed as a suitable choice. To further improve
this one could look into applying an adaptive learning rate to
lower the final reprojection error. A further improvement to
the 3D reconstruction is to densify the achieved point cloud
in order to obtain a better mesh.

References
[1] David Nistér. An efficient solution to the five-point relative

pose problem. IEEE transactions on pattern analysis and
machine intelligence, 26(6):756–770, 2004.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000.

[3] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to

image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981.

[4] Nordberg K. Introduction to Representations and Estimation
in Geometry. 2018.

[5] Perspective-n-point. https://en.wikipedia.org/
wiki/Perspective-n-Point. Accessed: 2021-05-
20.

[6] Jimmy Lei Ba Diederik P. Kingma. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations, 2015.

[7] Berthold K. P. Horn. Closed-form solution of absolute ori-
entation using unit quaternions. Pattern Recognition, 4(4),
1987.

[8] Hugues Hoppe Michael Kazhdan. Screened poisson surface
reconstruction. 2012.

[9] Ply - polygon file format. http://paulbourke.net/
dataformats/ply/. Accessed: 2021-05-18.

[10] Open3d, a modern library for 3d data processing. http:
//www.open3d.org/. Accessed: 2021-05-18.

5

https://en.wikipedia.org/wiki/Perspective-n-Point
https://en.wikipedia.org/wiki/Perspective-n-Point
http://paulbourke.net/dataformats/ply/
http://paulbourke.net/dataformats/ply/
http://www.open3d.org/
http://www.open3d.org/

